m-th summation of first n natural numbers is defined as following.
If m > 1 SUM(n, m) = SUM(SUM(n, m - 1), 1) Else SUM(n, 1) = Sum of first n natural numbers.
We are given m and n, we need to find SUM(n, m).
Examples:
Input : n = 4, m = 1 Output : SUM(4, 1) = 10 Explanation : 1 + 2 + 3 + 4 = 10 Input : n = 3, m = 2 Output : SUM(3, 2) = 21 Explanation : SUM(3, 2) = SUM(SUM(3, 1), 1) = SUM(6, 1) = 21
Naive Approach : We can solve this problem using two nested loop, where outer loop iterate for m and inner loop iterate for n. After completion of a single outer iteration, we should update n as whole of inner loop got executed and value of n must be changed then. Time complexity should be O(n*m).
for (int i = 1;i <= m;i++) { sum = 0; for (int j = 1;j <= n;j++) sum += j; n = sum; // update n }
Efficient Approach :
We can use direct formula for sum of first n numbers to reduce time.
We can also use recursion. In this approach m = 1 will be our base condition and for any intermediate step SUM(n, m), we will call SUM (SUM(n, m-1), 1) and for a single step SUM(n, 1) = n * (n + 1) / 2 will be used. This will reduce our time complexity to O(m).
int SUM (int n, int m) { if (m == 1) return (n * (n + 1) / 2); int sum = SUM(n, m-1); return (sum * (sum + 1) / 2); }
Below is the implementation of above idea :
C++
// CPP program to find m-th summation #include <bits/stdc++.h> using namespace std; // Function to return mth summation int SUM( int n, int m) { // base case if (m == 1) return (n * (n + 1) / 2); int sum = SUM(n, m-1); return (sum * (sum + 1) / 2); } // driver program int main() { int n = 5; int m = 3; cout << "SUM(" << n << ", " << m << "): " << SUM(n, m); return 0; } |
Java
// Java program to find m-th summation. class GFG { // Function to return mth summation static int SUM( int n, int m) { // base case if (m == 1 ) return (n * (n + 1 ) / 2 ); int sum = SUM(n, m - 1 ); return (sum * (sum + 1 ) / 2 ); } // Driver code public static void main(String[] args) { int n = 5 ; int m = 3 ; System.out.println( "SUM(" + n + ", " + m + "): " + SUM(n, m)); } } // This code is contributed by Anant Agarwal. |
Python
# Python program to find m-th summation. def SUM (n, m): # base case if m = = 1 : return (n * (n + 1 ) / / 2 ) su = SUM (n, m - 1 ) return (su * (su + 1 ) / / 2 ) # Driver code n = 5 m = 3 print ( "SUM(" + str (n) + ", " + str (m) + "): " + str ( SUM (n, m))) |
C#
// C# program to find m-th summation. using System; class GFG { // Function to return mth summation static int SUM( int n, int m) { // base case if (m == 1) return (n * (n + 1) / 2); int sum = SUM(n, m - 1); return (sum * (sum + 1) / 2); } // Driver Code public static void Main() { int n = 5; int m = 3; Console.Write( "SUM(" + n + ", " + m + "): " + SUM(n, m)); } } // This code is contributed by Nitin Mittal. |
PHP
<?php // PHP program to find m-th summation // Function to return // mth summation function SUM( $n , $m ) { // base case if ( $m == 1) return ( $n * ( $n + 1) / 2); $sum = SUM( $n , $m - 1); return ( $sum * ( $sum + 1) / 2); } // Driver Code $n = 5; $m = 3; echo "SUM(" , $n , ", " , $m , "): " , SUM( $n , $m ); // This code is contributed by vt_m. ?> |
Javascript
<script> // javascript program to find m-th summation // Function to return mth summation function SUM( n, m) { // base case if (m == 1) return (n * (n + 1) / 2); let sum = SUM(n, m-1); return (sum * (sum + 1) / 2); } // driver program let n = 5; let m = 3; document.write( "SUM(" + n + ", " + m + "): " + SUM(n, m)); // This code contributed by Rajput-Ji </script> |
Output:
SUM(5, 3): 7260
Space complexity :- O(M)
This article is contributed by Shivam Pradhan (anuj_charm). If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!