Wednesday, October 1, 2025
HomeData Modelling & AIFind m-th summation of first n natural numbers.

Find m-th summation of first n natural numbers.

m-th summation of first n natural numbers is defined as following.
 

If m > 1
  SUM(n, m) = SUM(SUM(n, m - 1), 1)
Else 
  SUM(n, 1) = Sum of first n natural numbers.

We are given m and n, we need to find SUM(n, m).
Examples: 
 

Input  : n = 4, m = 1 
Output : SUM(4, 1) = 10
Explanation : 1 + 2 + 3 + 4 = 10

Input  : n = 3, m = 2 
Output : SUM(3, 2) = 21
Explanation : SUM(3, 2) 
             = SUM(SUM(3, 1), 1) 
             = SUM(6, 1) 
             = 21

 

Naive Approach : We can solve this problem using two nested loop, where outer loop iterate for m and inner loop iterate for n. After completion of a single outer iteration, we should update n as whole of inner loop got executed and value of n must be changed then. Time complexity should be O(n*m). 
 

for (int i = 1;i <= m;i++)
{
    sum = 0;
    for (int j = 1;j <= n;j++)
        sum += j;
    n = sum;  // update n
}

Efficient Approach : 
We can use direct formula for sum of first n numbers to reduce time. 
We can also use recursion. In this approach m = 1 will be our base condition and for any intermediate step SUM(n, m), we will call SUM (SUM(n, m-1), 1) and for a single step SUM(n, 1) = n * (n + 1) / 2 will be used. This will reduce our time complexity to O(m). 
 

int SUM (int n, int m)
{
    if (m == 1)
        return (n * (n + 1) / 2);
    int sum = SUM(n, m-1);
    return (sum * (sum + 1) / 2);
}

Below is the implementation of above idea :
 

C++




// CPP program to find m-th summation
#include <bits/stdc++.h>
using namespace std;
 
// Function to return mth summation
int SUM(int n, int m)
{  
    // base case
    if (m == 1)
        return (n * (n + 1) / 2);
         
    int sum = SUM(n, m-1);
    return (sum * (sum + 1) / 2);
}
 
// driver program
int main()
{
    int n = 5;
    int m = 3;
    cout << "SUM(" << n << ", " << m
         << "): " << SUM(n, m);
    return 0;
}


Java




// Java program to find m-th summation.
class GFG {
     
    // Function to return mth summation
    static int SUM(int n, int m) {
         
        // base case
        if (m == 1)
            return (n * (n + 1) / 2);
     
        int sum = SUM(n, m - 1);
         
        return (sum * (sum + 1) / 2);
    }
     
    // Driver code
    public static void main(String[] args) {
         
        int n = 5;
        int m = 3;
         
        System.out.println("SUM(" + n + ", "
                        + m + "): "    + SUM(n, m));
    }
}
 
// This code is contributed by Anant Agarwal.


Python




# Python program to find m-th summation.
def SUM(n, m):
  # base case
  if m == 1:
      return (n * (n + 1) // 2)
  su = SUM(n, m - 1)
  return (su * (su + 1) // 2)
 
# Driver code
n = 5
m = 3
print("SUM("+str(n)+", "+str(m)+"): "+str(SUM(n, m)))


C#




// C# program to find m-th summation.
using System;
 
class GFG
{
     
    // Function to return mth summation
    static int SUM(int n, int m)
    {
         
        // base case
        if (m == 1)
            return (n * (n + 1) / 2);
     
        int sum = SUM(n, m - 1);
         
        return (sum * (sum + 1) / 2);
    }
     
    // Driver Code
    public static void Main()
    {
         
        int n = 5;
        int m = 3;
         
        Console.Write("SUM(" + n + ", "
                       + m + "): " + SUM(n, m));
    }
}
 
// This code is contributed by Nitin Mittal.


PHP




<?php
// PHP program to find m-th summation
 
// Function to return
// mth summation
function SUM($n, $m)
{
     
    // base case
    if ($m == 1)
        return ($n * ($n + 1) / 2);
         
    $sum = SUM($n, $m - 1);
    return ($sum * ($sum + 1) / 2);
}
 
    // Driver Code
    $n = 5;
    $m = 3;
    echo "SUM(" , $n , ", " , $m ,
         "): " , SUM($n, $m);
 
// This code is contributed by vt_m.
?>


Javascript




<script>
// javascript program to find m-th summation
 
// Function to return mth summation
function SUM( n,  m)
{  
    // base case
    if (m == 1)
        return (n * (n + 1) / 2);
         
    let sum = SUM(n, m-1);
    return (sum * (sum + 1) / 2);
}
 
// driver program
 
    let n = 5;
    let m = 3;
   document.write( "SUM(" + n + ", " + m
         + "): " + SUM(n, m));
 
// This code contributed by Rajput-Ji
 
</script>


Output: 
 

SUM(5, 3): 7260

Space complexity :- O(M)

This article is contributed by Shivam Pradhan (anuj_charm). If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32330 POSTS0 COMMENTS
Milvus
84 POSTS0 COMMENTS
Nango Kala
6703 POSTS0 COMMENTS
Nicole Veronica
11867 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11926 POSTS0 COMMENTS
Shaida Kate Naidoo
6815 POSTS0 COMMENTS
Ted Musemwa
7078 POSTS0 COMMENTS
Thapelo Manthata
6775 POSTS0 COMMENTS
Umr Jansen
6774 POSTS0 COMMENTS