Friday, January 10, 2025
Google search engine
HomeData Modelling & AIFind M such that GCD of M and given number N is...

Find M such that GCD of M and given number N is maximum

Given an integer N greater than 2, the task is to find an element M such that GCD(N, M) is maximum.

Examples:

Input: N = 10
Output: 5
Explanation:
gcd(1, 10), gcd(3, 10), gcd(7, 10), gcd(9, 10) is 1, 
 gcd(2, 10), gcd(4, 10), gcd(6, 10), gcd(8, 10) is 2, 
 gcd(5, 10) is 5 which is maximum.

Input: N = 21
Output: 7
Explanation:
gcd(7, 21) is maximum among all the integers from 1 to 21.

 

Naive Approach: The simplest approach is to loop through all the numbers in the range [1, N-1] and find GCD of each number with N. The number which given maximum GCD with N is the required result.

Time Complexity: O(N)
Auxiliary Space: O(1)

Efficient Approach: To optimize the above approach, we observe that the GCD of two numbers will be definitely one of its divisors in the range [1, N-1]. And, GCD will be maximum if the divisor is maximum.
Therefore, the idea is to find all the divisors of N and store a maximum of those divisors which is the required result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the integer M
// such that gcd(N, M) is maximum
int findMaximumGcd(int n)
{
    // Initialize a variable
    int max_gcd = 1;
 
    // Find all the divisors of N and
    // return the maximum divisor
    for (int i = 1; i * i <= n; i++) {
 
        // Check if i is divisible by N
        if (n % i == 0) {
 
            // Update max_gcd
            if (i > max_gcd)
                max_gcd = i;
 
            if ((n / i != i)
                && (n / i != n)
                && ((n / i) > max_gcd))
                max_gcd = n / i;
        }
    }
 
    // Return the maximum value
    return max_gcd;
}
 
// Driver Code
int main()
{
    // Given Number
    int N = 10;
 
    // Function Call
    cout << findMaximumGcd(N);
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to find the integer M
// such that gcd(N, M) is maximum
static int findMaximumGcd(int n)
{
     
    // Initialize a variable
    int max_gcd = 1;
 
    // Find all the divisors of N and
    // return the maximum divisor
    for(int i = 1; i * i <= n; i++)
    {
         
        // Check if i is divisible by N
        if (n % i == 0)
        {
             
            // Update max_gcd
            if (i > max_gcd)
                max_gcd = i;
 
            if ((n / i != i) &&
                (n / i != n) &&
               ((n / i) > max_gcd))
                max_gcd = n / i;
        }
    }
 
    // Return the maximum value
    return max_gcd;
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given Number
    int N = 10;
 
    // Function Call
    System.out.print(findMaximumGcd(N));
}
}
 
// This code is contributed by Amit Katiyar


Python3




# Python3 program for the above approach
 
# Function to find the integer M
# such that gcd(N, M) is maximum
def findMaximumGcd(n):
     
    # Initialize variables
    max_gcd = 1
    i = 1
     
    # Find all the divisors of N and
    # return the maximum divisor
    while (i * i <= n):
         
        # Check if i is divisible by N
        if n % i == 0:
             
            # Update max_gcd
            if (i > max_gcd):
                max_gcd = i
                 
            if ((n / i != i) and
                (n / i != n) and
               ((n / i) > max_gcd)):
                max_gcd = n / i
        i += 1
         
    # Return the maximum value
    return (int(max_gcd))
 
# Driver Code
if __name__ == '__main__':
     
    # Given number
    n = 10
     
    # Function call
    print(findMaximumGcd(n))
     
# This code is contributed by virusbuddah_


C#




// C# program for the
// above approach
using System;
class GFG{
 
// Function to find the
// integer M such that
// gcd(N, M) is maximum
static int findMaximumGcd(int n)
{   
  // Initialize a variable
  int max_gcd = 1;
 
  // Find all the divisors of
  // N and return the maximum
  // divisor
  for(int i = 1;
          i * i <= n; i++)
  {
    // Check if i is
    // divisible by N
    if (n % i == 0)
    {
      // Update max_gcd
      if (i > max_gcd)
        max_gcd = i;
 
      if ((n / i != i) &&
          (n / i != n) &&
          ((n / i) > max_gcd))
        max_gcd = n / i;
    }
  }
 
  // Return the maximum
  // value
  return max_gcd;
}
 
// Driver Code
public static void Main(String[] args)
{   
  // Given Number
  int N = 10;
 
  // Function Call
  Console.Write(findMaximumGcd(N));
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// Javascript program to implement
// the above approach
 
// Function to find the integer M
// such that gcd(N, M) is maximum
function findMaximumGcd(n)
{
      
    // Initialize a variable
    let max_gcd = 1;
  
    // Find all the divisors of N and
    // return the maximum divisor
    for(let i = 1; i * i <= n; i++)
    {
          
        // Check if i is divisible by N
        if (n % i == 0)
        {
              
            // Update max_gcd
            if (i > max_gcd)
                max_gcd = i;
  
            if ((n / i != i) &&
                (n / i != n) &&
               ((n / i) > max_gcd))
                max_gcd = n / i;
        }
    }
  
    // Return the maximum value
    return max_gcd;
}
 
    // Driver Code
         
    // Given Number
    let N = 10;
  
    // Function Call
    document.write(findMaximumGcd(N));
 
</script>


Output: 

5

Time Complexity: O(log2N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments