Given an array arr[] containing N elements, the task is to find the length of the longest subarray of an input array containing at most two distinct integers.
Examples:
Input: N = 3, arr[ ] = { 2, 1, 2 }
Output: 3
Explanation: We can pick from all three elements.Input: N = 6, arr[ ] = { 0, 1, 2, 2, 2, 2 }
Output: 5
Explanation: It’s optimal to pick elements(0-indexed) [1, 2, 3, 4, 5].
Approach: Brute-Force approach
The steps for the approach are:
- Initialize a variable “size” to 0 to store the size of the largest subarray with at most two distinct elements.
- Generate all subarrays of the input array using two nested loops.
- For each subarray, create a set to store distinct elements and check if the subarray has at most two distinct elements by iterating over the elements of the subarray and adding them to the set. If the size of the set exceeds 2, break out of the loop.
- If the subarray has at most two distinct elements, update the “size” variable with the length of the subarray if it is greater than the current value of “size”.
- Return the “size” variable as the output.
Here is the implementation of above approach:
C++
#include <bits/stdc++.h> using namespace std; int totalElements( int N, vector< int > arr) { int size = 0; // Size of the largest subarray with at most two distinct elements // Generate all subarrays for ( int i = 0; i < N; i++) { for ( int j = i; j < N; j++) { // Create a set to store distinct elements unordered_set< int > distinct; // Check if the subarray has at most two distinct elements for ( int k = i; k <= j; k++) { distinct.insert(arr[k]); if (distinct.size() > 2) { break ; } } // Update the size of the largest subarray if (distinct.size() <= 2) { size = max(size, j-i+1); } } } return size; } // Driver code int main() { int N = 6; vector< int > arr = {0, 1, 2, 2, 2, 2}; // Function call int ans = totalElements(N, arr); cout << ans << endl; return 0; } |
Java
import java.util.*; public class Main { public static int totalElements( int N, int [] arr) { int size = 0 ; // Size of the largest subarray with at most two distinct elements // Generate all subarrays for ( int i = 0 ; i < N; i++) { for ( int j = i; j < N; j++) { // Create a set to store distinct elements Set<Integer> distinct = new HashSet<>(); // Check if the subarray has at most two distinct elements for ( int k = i; k <= j; k++) { distinct.add(arr[k]); if (distinct.size() > 2 ) { break ; } } // Update the size of the largest subarray if (distinct.size() <= 2 ) { size = Math.max(size, j-i+ 1 ); } } } return size; } // Driver code public static void main(String[] args) { int N = 6 ; int [] arr = { 0 , 1 , 2 , 2 , 2 , 2 }; // Function call int ans = totalElements(N, arr); System.out.println(ans); } } |
Python3
def totalElements(N, arr): size = 0 # Size of the largest subarray with at most two distinct elements # Generate all subarrays for i in range (N): for j in range (i, N): # Create a set to store distinct elements distinct = set () # Check if the subarray has at most two distinct elements for k in range (i, j + 1 ): distinct.add(arr[k]) if len (distinct) > 2 : break # Update the size of the largest subarray if len (distinct) < = 2 : size = max (size, j - i + 1 ) return size # Driver code if __name__ = = "__main__" : N = 6 arr = [ 0 , 1 , 2 , 2 , 2 , 2 ] # Function call ans = totalElements(N, arr) print (ans) |
C#
using System; using System.Collections.Generic; public class Program { public static int TotalElements( int N, int [] arr) { int size = 0; // Size of the largest subarray with at most two distinct elements // Generate all subarrays for ( int i = 0; i < N; i++) { for ( int j = i; j < N; j++) { // Create a set to store distinct elements HashSet< int > distinct = new HashSet< int >(); // Check if the subarray has at most two distinct elements for ( int k = i; k <= j; k++) { distinct.Add(arr[k]); if (distinct.Count > 2) { break ; } } // Update the size of the largest subarray if (distinct.Count <= 2) { size = Math.Max(size, j - i + 1); } } } return size; } public static void Main() { int N = 6; int [] arr = new int [] {0, 1, 2, 2, 2, 2}; // Function call int ans = TotalElements(N, arr); Console.WriteLine(ans); } } |
Javascript
function totalElements(N, arr) { let size = 0; // Size of the largest subarray with at most two distinct elements // Generate all subarrays for (let i = 0; i < N; i++) { for (let j = i; j < N; j++) { // Create a set to store distinct elements const distinct = new Set(); // Check if the subarray has at most two distinct elements for (let k = i; k <= j; k++) { distinct.add(arr[k]); if (distinct.size > 2) { break ; } } // Update the size of the largest subarray if (distinct.size <= 2) { size = Math.max(size, j-i+1); } } } return size; } const N = 6; const arr = [0, 1, 2, 2, 2, 2]; // Function call const ans = totalElements(N, arr); console.log(ans); |
5
The time complexity of this approach is O(N^3) because there are O(N^2) subarrays and each subarray takes O(N) time to check.
The space complexity is O(1) because we are not using any extra space apart from a few variables to store the results.
Optimal Approach: To solve the problem follow the below idea:
The idea is to use the sliding window approach and use the map to store the contiguous frequency of the elements.
Follow the steps to solve the problem:
- Create an empty map<int, int> mp to store the frequency of each element.
- Initialize i = 0, j = 0, and n=arr.size().
- Initialize size = 0 to store the maximum length of the subarray.
- While j is less than n:
- Increment the frequency of the current element(arr[j]) in the map mp.
- While the size of the map mp is greater than 2,
- Decrement the frequency of the element at position i (arr[i]) in the map mp.
- If the frequency of the element at position i in the map mp becomes 0, remove it from the map.
- Increment i.
- Update the maximum length of the subarray by taking the maximum of the current size and (j – i + 1).
- Increment j.
- Return the size.
Below is the implementation for the above approach:
C++
// C++ code for the above approach: #include <bits/stdc++.h> using namespace std; int totalElements( int N, vector< int >& arr) { map< int , int > mp; int i = 0, j = 0, n = arr.size(); int size = 0; while (j < n) { mp[arr[j]]++; while (mp.size() > 2) { mp[arr[i]]--; if (mp[arr[i]] == 0) { mp.erase(arr[i]); } i++; } size = max(size, j - i + 1); j++; } return size; } // Drivers code int main() { int N = 6; vector< int > arr = { 0, 1, 2, 2, 2, 2 }; // Function Call int ans = totalElements(N, arr); cout << ans; return 0; } |
Java
import java.util.*; public class Main { public static int totalElements( int N, ArrayList<Integer> arr) { Map<Integer, Integer> mp = new HashMap<>(); int i = 0 , j = 0 , n = arr.size(); int size = 0 ; while (j < n) { int current = arr.get(j); mp.put(current, mp.getOrDefault(current, 0 ) + 1 ); while (mp.size() > 2 ) { int left = arr.get(i); mp.put(left, mp.get(left) - 1 ); if (mp.get(left) == 0 ) { mp.remove(left); } i++; } size = Math.max(size, j - i + 1 ); j++; } return size; } public static void main(String[] args) { int N = 6 ; ArrayList<Integer> arr = new ArrayList<>(Arrays.asList( 0 , 1 , 2 , 2 , 2 , 2 )); // Function Call int ans = totalElements(N, arr); System.out.println(ans); } } |
Python3
import sys from collections import defaultdict def totalElements(N, arr): # Create a dictionary to store frequency of elements mp = defaultdict( int ) i = 0 # Left pointer j = 0 # Right pointer n = len (arr) # Length of the input array size = 0 # Size of the largest subarray with at most two distinct elements while j < n: # Update frequency of current element in the dictionary mp[arr[j]] + = 1 while len (mp) > 2 : # Decrement frequency of leftmost element in the dictionary mp[arr[i]] - = 1 # If frequency becomes zero, remove it from the dictionary if mp[arr[i]] = = 0 : del mp[arr[i]] i + = 1 # Move left pointer to the right # Update the size of the largest subarray size = max (size, j - i + 1 ) j + = 1 # Move right pointer to the right return size # Driver code if __name__ = = "__main__" : N = 6 arr = [ 0 , 1 , 2 , 2 , 2 , 2 ] # Function call ans = totalElements(N, arr) print (ans) |
C#
// C# code for the approach using System; using System.Collections.Generic; class GFG { // Defining the TotalElements function that returns an // integer value. static int TotalElements( int N, List< int > arr) { // Initializing a dictionary to keep track of the // elements and their frequency. Dictionary< int , int > mp = new Dictionary< int , int >(); // Initializing variables i and j to 0 and n // respectively, where n is the length of the given // array. int i = 0, j = 0, n = arr.Count; // Initializing the size variable to 0. int size = 0; // Running a while loop until j is less than n. while (j < n) { // Checking if the dictionary already contains // the element at index j. if (mp.ContainsKey(arr[j])) { // If it does, increment the value of the // key (frequency). mp[arr[j]]++; } else { // If it doesn't, add the element to the // dictionary with frequency 1. mp.Add(arr[j], 1); } // Running a while loop until the size of the // dictionary becomes greater than 2. while (mp.Count > 2) { // Decrementing the frequency of the element // at index i. mp[arr[i]]--; // Removing the element from the dictionary // if its frequency becomes 0. if (mp[arr[i]] == 0) { mp.Remove(arr[i]); } // Incrementing i. i++; } // Calculating the maximum size of the subarray // containing at most 2 distinct elements. size = Math.Max(size, j - i + 1); // Incrementing j. j++; } // Returning the size of the subarray containing at // most 2 distinct elements. return size; } // Driver's code static void Main( string [] args) { // Initializing the value of N. int N = 6; // Initializing the values of the elements in the // array. List< int > arr = new List< int >{ 0, 1, 2, 2, 2, 2 }; // Function call int ans = TotalElements(N, arr); Console.WriteLine(ans); } } |
Javascript
// JavaScript code for the approach function totalElements(N, arr) { // Initializing a Map to keep track of the elements and their frequency const mp = new Map(); // Initializing variables i and j to 0 and n // respectively, where n is the length of the given // array. let i = 0, j = 0, n = arr.length; // Initializing the size variable to 0. let size = 0; // Running a while loop until j is less than n. while (j < n) { // Checking if the Map already contains // the element at index j. if (mp.has(arr[j])) { // If it does, increment the value of the // key (frequency). mp.set(arr[j], mp.get(arr[j]) + 1); } else { // If it doesn't, add the element to the // Map with frequency 1. mp.set(arr[j], 1); } // Running a while loop until the size of the // Map becomes greater than 2. while (mp.size > 2) { // Decrementing the frequency of the element // at index i. mp.set(arr[i], mp.get(arr[i]) - 1); // Removing the element from the Map // if its frequency becomes 0. if (mp.get(arr[i]) === 0) { mp. delete (arr[i]); } // Incrementing i. i++; } // Calculating the maximum size of the subarray // containing at most 2 distinct elements. size = Math.max(size, j - i + 1); // Incrementing j. j++; } // Returning the size of the subarray containing at // most 2 distinct elements. return size; } // Driver's code const N = 6; // Initializing the values of the elements in the // array. const arr = [0, 1, 2, 2, 2, 2]; // Function call const ans = totalElements(N, arr); console.log(ans); |
5
Time complexity: O(N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!