Thursday, January 30, 2025
Google search engine
HomeData Modelling & AIFind last two digits of sum of N factorials

Find last two digits of sum of N factorials

Given a number N, the task is to find the unit and tens places digit of the first N natural numbers factorials, i.e last two digit of 1!+2!+3!+….N! where N<=10e18.

Examples: 

Input: n = 2 
Output: 3
Explanation: 1! + 2! = 3, Last two digits are 3

Input: 4
Output: 33
Explanation: 1!+2!+3!+4!=33, Last two digits are 33

 

Naive Approach: In this approach, simply calculate the factorial of each number and find the sum of these. Finally, get the unit and tens place the digit of the sum. This will take a lot of time and unnecessary calculations.

Efficient Approach: In this approach, only unit’s and ten’s digit of N is to be calculated in the range [1, 10], because: 
1! = 1 
2! = 2 
3! = 6 
4! = 24 
5! = 120 
6! = 720 
7! = 5040 
8!=40320 
9!=362880 
10!=3628800 
so on.
As 10 != 3628800, and factorial of number greater than 10 have two trailing zeros. So, N>=10 doesn’t contribute in unit and tens place while doing sum.
Therefore, 
 

if (n < 10) 
ans = (1 ! + 2 ! +..+ n !) % 100; 
else 
ans = (1 ! + 2 ! + 3 ! + 4 !+ 5 ! + 6 ! + 7 ! + 8 ! + 9 ! + 10 !) % 100;
Note: We know (1! + 2! + 3! + 4!+…+10!) % 100 = 13 
So we always return 13 when n is greater than 9.

Below is the implementation of the above approach.
 

C++




// C++ program to find the unit place digit
// of the first N natural numbers factorials
#include <iostream>
using namespace std;
#define ll long int
// Function to find the unit's and ten's place digit
int get_last_two_digit(long long int N)
{
 
    // Let us write for cases when
    // N is smaller than or equal
    // to 10.
    if (N <= 10) {
        ll ans = 0, fac = 1;
        for (int i = 1; i <= N; i++) {
            fac = fac * i;
            ans += fac;
        }
        return ans % 100;
    }
 
    // We know following
    // (1! + 2! + 3! + 4!...+10!) % 100 = 13
    else // (N >= 10)
        return 13;
}
 
// Driver code
int main()
{
    long long int N = 1;
    for (N = 1; N <= 10; N++)
        cout << "For N = " << N
             << " : " << get_last_two_digit(N)
             << endl;
 
    return 0;
}


Java




//Java program to find the unit place digit
//of the first N natural numbers factorials
public class AAA {
 
    //Function to find the unit's and ten's place digit
    static int get_last_two_digit(long N)
    {
 
     // Let us write for cases when
     // N is smaller than or equal
     // to 10.
     if (N <= 10) {
         long ans = 0, fac = 1;
         for (int i = 1; i <= N; i++) {
             fac = fac * i;
             ans += fac;
         }
         return (int)ans % 100;
     }
 
     // We know following
     // (1! + 2! + 3! + 4!...+10!) % 100 = 13
     else // (N >= 10)
         return 13;
    }
 
    //Driver code
    public static void main(String[] args) {
         
        long N = 1;
         for (N = 1; N <= 10; N++)
             System.out.println( "For N = " + N
                  + " : " + get_last_two_digit(N));
    }
 
}


Python3




# Python3 program to find the unit
# place digit of the first N natural
# numbers factorials
 
# Function to find the unit's
# and ten's place digit
def get_last_two_digit(N):
     
    # Let us write for cases when
    # N is smaller than or equal
    # to 10
    if N <= 10:
        ans = 0
        fac = 1
        for i in range(1, N + 1):
            fac = fac * i
            ans += fac
        ans = ans % 100
        return ans
         
    # We know following
    # (1! + 2! + 3! + 4!...+10!) % 100 = 13
    # // (N >= 10)
    else:
        return 13
 
# Driver Code
N = 1
for N in range(1, 11):
    print("For N = ", N, ": ",
           get_last_two_digit(N), sep = ' ')
 
# This code is contributed
# by sahilshelangia


C#




// C# program to find the unit
// place digit of the first N
// natural numbers factorials
using System;
 
class GFG
{
 
// Function to find the unit's
// and ten's place digit
static int get_last_two_digit(long N)
{
 
// Let us write for cases when
// N is smaller than or equal
// to 10.
if (N <= 10)
{
    long ans = 0, fac = 1;
    for (int i = 1; i <= N; i++)
    {
        fac = fac * i;
        ans += fac;
    }
    return (int)ans % 100;
}
 
// We know following
// (1! + 2! + 3! + 4!...+10!) % 100 = 13
else // (N >= 10)
    return 13;
}
 
// Driver code
public static void Main()
{
    long N = 1;
    for (N = 1; N <= 10; N++)
        Console.WriteLine( "For N = " + N +
            " : " + get_last_two_digit(N));
}
}
 
// This code is contributed
// by Akanksha Rai(Abby_akku)


PHP




<?php
// PHP program to find the unit place digit
// of the first N natural numbers factorials
 
// Function to find the unit's
// and ten's place digit
function get_last_two_digit($N)
{
 
    // Let us write for cases when
    // N is smaller than or equal
    // to 10.
    if ($N <= 10)
    {
        $ans = 0; $fac = 1;
        for ($i = 1; $i <= $N; $i++)
        {
            $fac = $fac * $i;
            $ans += $fac;
        }
        return $ans % 100;
    }
 
    // We know following
    // (1! + 2! + 3! + 4!...+10!) % 100 = 13
    else // (N >= 10)
        return 13;
}
 
// Driver code
$N = 1;
for ($N = 1; $N <= 10; $N++)
    echo "For N = " . $N . " : " .
          get_last_two_digit($N) . "\n";
 
// This code is contributed
// by Akanksha Rai(Abby_akku)


Javascript




<script>
 
// Javascript program to find the unit place digit
// of the first N natural numbers factorials
 
// Function to find the unit's and ten's place digit
function get_last_two_digit(N)
{
 
    // Let us write for cases when
    // N is smaller than or equal
    // to 10.
    if (N <= 10) {
        let ans = 0, fac = 1;
        for (let i = 1; i <= N; i++) {
            fac = fac * i;
            ans += fac;
        }
        return ans % 100;
    }
 
    // We know following
    // (1! + 2! + 3! + 4!...+10!) % 100 = 13
    else // (N >= 10)
        return 13;
}
 
// Driver code
 
    let N = 1;
    for (N = 1; N <= 10; N++)
        document.write("For N = " + N
            + " : " + get_last_two_digit(N)
            + "<br>");
 
// This code is contributed by Mayank Tyagi
 
</script>


Output: 

For N = 1 : 1
For N = 2 : 3
For N = 3 : 9
For N = 4 : 33
For N = 5 : 53
For N = 6 : 73
For N = 7 : 13
For N = 8 : 33
For N = 9 : 13
For N = 10 : 13

 

Time Complexity: O(1), the loop can run for a maximum of 100 times in the worst case.
Auxiliary Space: O(1) as no extra space is used.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments