Saturday, January 4, 2025
Google search engine
HomeData Modelling & AIFind last five digits of a given five digit number raised to...

Find last five digits of a given five digit number raised to power five

Given a five-digit number N., The task is to find the last five digits of the given number raised to the power of 5 after modifying it by arranging the digits as: 

first digit, third digit, fifth digit, fourth digit, second digit.

Examples: 

Input : N = 12345
Output : 71232
Explanation :
After modification the number becomes 13542. (13542)5 is
455422043125550171232
Input : N = 10000
Output : 00000

Approach: In this problem, just implementation of the actions described in the statement is required. However, there are two catches in this problem.
The first catch is that the fifth power of a five-digit number cannot be represented by a 64-bit integer. But we do not actually need the fifth power, we need the fifth power modulo 105. And mod operation can be applied after each multiplication.
The second catch is that you need to output five digits, not the fifth power modulo 105. The difference is when the fifth digit from the end is zero. To output, a number with the leading zero one can either use corresponding formatting (%05d in printf) or extract digits and output them one by one.

Below is the implementation of the above approach :

C++




// CPP program to find last five digits
// of a five digit number raised to power five
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the last five digits
// of a five digit number raised to power five
int lastFiveDigits(int n)
{
    n = (n / 10000) * 10000
        + ((n / 100) % 10)
              * 1000
        + (n % 10)
              * 100
        + ((n / 10) % 10)
              * 10
        + (n / 1000) % 10;
 
    long long ans = 1;
    for (int i = 0; i < 5; i++) {
        ans *= n;
        ans %= 100000;
    }
 
    printf("%05d", ans);
}
 
// Driver code
int main()
{
    int n = 12345;
 
    lastFiveDigits(n);
 
    return 0;
}


Java




// Java program to find last five digits
// of a five digit number raised to power five
 
class GfG {
 
    // Function to find the last five digits
    // of a five digit number raised to power five
    static void lastFiveDigits(int n)
    {
        n = (n / 10000) * 10000
            + ((n / 100) % 10)
                  * 1000
            + (n % 10)
                  * 100
            + ((n / 10) % 10)
                  * 10
            + (n / 1000) % 10;
 
        int ans = 1;
        for (int i = 0; i < 5; i++) {
            ans *= n;
            ans %= 100000;
        }
 
        System.out.println(ans);
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int n = 12345;
 
        lastFiveDigits(n);
    }
}


Python3




# Python3 program to find last five digits
# of a five digit number raised to power five
 
# Function to find the last five digits
# of a five digit number raised to power five
def lastFiveDigits(n):
    n = ((int)(n / 10000) * 10000 +
        ((int)(n / 100) % 10) * 1000 + (n % 10) * 100 +
        ((int)(n / 10) % 10) * 10 + (int)(n / 1000) % 10)
    ans = 1
    for i in range(5):
        ans *= n
        ans %= 100000
    print(ans)
 
# Driver code
if __name__ == '__main__':
    n = 12345
 
    lastFiveDigits(n)
 
# This code contributed by PrinciRaj1992


C#




// C# program to find last five
// digits of a five digit number
// raised to power five
using System;
 
class GFG
{
 
    // Function to find the last
    // five digits of a five digit
    // number raised to power five
    public static void lastFiveDigits(int n)
    {
        n = (n / 10000) * 10000 +
           ((n / 100) % 10) * 1000 +
            (n % 10) * 100 +
           ((n / 10) % 10) * 10 +
            (n / 1000) % 10;
 
        int ans = 1;
        for (int i = 0; i < 5; i++)
        {
            ans *= n;
            ans %= 100000;
        }
 
        Console.WriteLine(ans);
    }
 
    // Driver code
    public static void Main(string[] args)
    {
        int n = 12345;
 
        lastFiveDigits(n);
    }
}
 
// This code is contributed
// by Shrikant13


Javascript




<script>
// JavaScript program to find last five digits
// of a five digit number raised to power five
 
// Function to find the last five digits
// of a five digit number raised to power five
function lastFiveDigits(n)
{
    n = (Math.floor(n / 10000)) * 10000
        + (Math.floor(n / 100) % 10)
            * 1000
        + (n % 10)
            * 100
        + (Math.floor(n / 10) % 10)
            * 10
        + Math.floor(n / 1000) % 10;
 
    let ans = 1;
    for (let i = 0; i < 5; i++) {
        ans *= n;
        ans %= 100000;
    }
 
    document.write(ans);
}
 
// Driver code
 
    let n = 12345;
 
    lastFiveDigits(n);
 
// This code is contributed by Manoj.
 
</script>


PHP




<?php
// PHP program to find last five digits
// of a five digit number raised to power five
 
// Function to find the last five digits
// of a five digit number raised to power five
function lastFiveDigits($n)
{
    $n = (int)($n / 10000) * 10000 +
        ((int)($n / 100) % 10) * 1000 +
              ($n % 10) * 100 +
        ((int)($n / 10) % 10) * 10 +
         (int)($n / 1000) % 10;
 
    $ans = 1;
    for ($i = 0; $i < 5; $i++)
    {
        $ans *= $n;
        $ans %= 100000;
    }
 
    echo $ans;
}
 
// Driver code
$n = 12345;
 
lastFiveDigits($n);
 
// This code is contributed
// by Akanksha Rai
?>


Output

71232


Time Complexity: O(1)
Auxiliary Space: O(1)

Approach: Modified Digit Arrangement and Modulo Operation” 

The “Modified Digit Arrangement and Modulo Operation” approach to finding the last five digits of a five-digit number raised to power five consists of the following steps:

  1. Modify the number as per the given arrangement of digits.
  2. Calculate the power of 5 of the modified number.
  3. Take modulo with 100000 (10^5) to get the last five digits.

The key idea behind this approach is to use the given arrangement of digits to modify the original number in such a way that the resulting number has the same last five digits as the original number when raised to power five. Then, by taking modulo with 100000, we can obtain the last five digits of the resulting number.

C++




#include <iostream>
 
// Function to calculate (base^exponent) % modulus using modular exponentiation
int power(int base, int exponent, int modulus) {
    if (exponent == 0)
        return 1;
     
    long long result = 1;
    long long x = base % modulus;
     
    while (exponent > 0) {
        if (exponent % 2 == 1)
            result = (result * x) % modulus;
         
        x = (x * x) % modulus;
        exponent /= 2;
    }
     
    return result;
}
 
// Function to find the last five digits of the number N after performing the given operations
int findLastFiveDigits(int N) {
    // Extract individual digits of the number
    int digit1 = N / 10000;
    int digit2 = (N / 1000) % 10;
    int digit3 = (N / 100) % 10;
    int digit4 = (N / 10) % 10;
    int digit5 = N % 10;
 
    // Modify the number as per the given arrangement of digits
    int new_N = digit1 * 10000 + digit3 * 1000 + digit5 * 100 + digit4 * 10 + digit2;
    std::cout << "Modified number: " << new_N << std::endl;
 
    // Calculate the power of 5 of the modified number using modular exponentiation
    int powerVal = power(new_N, 5, 100000);
    std::cout << "Power of 5: " << powerVal << std::endl;
 
    // Take modulo with 100000 to get the last five digits
    int last_five_digits = powerVal % 100000;
    std::cout << "Last five digits: " << last_five_digits << std::endl;
 
    return last_five_digits;
}
 
int main() {
    std::cout << findLastFiveDigits(12345) << std::endl;
    std::cout << findLastFiveDigits(10000) << std::endl;
 
    // This code is contributed by Shivam Tiwari
 
    return 0;
}


Java




public class GFG {
    public static void main(String[] args)
    {
        System.out.println(findLastFiveDigits(12345));
        System.out.println(findLastFiveDigits(10000));
    }
 
    public static int findLastFiveDigits(int N)
    {
        // Modify the number as per the given arrangement of
        // digits
        int new_N = Integer.parseInt(
            "" + Integer.toString(N).charAt(0)
            + Integer.toString(N).charAt(2)
            + Integer.toString(N).charAt(4)
            + Integer.toString(N).charAt(3)
            + Integer.toString(N).charAt(1));
        System.out.println("Modified number: " + new_N);
 
        // Calculate the power of 5 of the modified number
        long power = (long)Math.pow(new_N, 5);
        System.out.println("Power of 5: " + power);
 
        // Take modulo with 100000 to get the last five
        // digits
        int last_five_digits = (int)(power % 100000);
        System.out.println("Last five digits: "
                           + last_five_digits);
 
        return last_five_digits;
    }
}


Python3




def find_last_five_digits(N):
    # Modify the number as per the given arrangement of digits
    new_N = int(str(N)[0] + str(N)[2] + str(N)[4] + str(N)[3] + str(N)[1])
    print(f"Modified number: {new_N}")
 
    # Calculate the power of 5 of the modified number
    power = new_N ** 5
    print(f"Power of 5: {power}")
 
    # Take modulo with 100000 to get the last five digits
    last_five_digits = power % 100000
    print(f"Last five digits: {last_five_digits}")
 
    return last_five_digits
 
 
print(find_last_five_digits(12345))
print(find_last_five_digits(10000))


C#




using System;
 
public class GFG {
  public static void Main(string[] args)
  {
    Console.WriteLine(findLastFiveDigits(12345));
    Console.WriteLine(findLastFiveDigits(10000));
  }
 
  public static int findLastFiveDigits(int N)
  {
 
    // Modify the number as per the given arrangement of
    // digits
    int new_N = int.Parse(
      "" + N.ToString()[0]
      + N.ToString()[2]
      + N.ToString()[4]
      + N.ToString()[3]
      + N.ToString()[1]);
    Console.WriteLine("Modified number: " + new_N);
 
    // Calculate the power of 5 of the modified number
    long power = (long)Math.Pow(new_N, 5);
    Console.WriteLine("Power of 5: " + Math.Abs(power));
 
    // Take modulo with 100000 to get the last five
    // digits
    int last_five_digits = (int)(power % 100000);
    Console.WriteLine("Last five digits: "
                      + Math.Abs(last_five_digits));
 
    return Math.Abs(last_five_digits);
  }
}
// This code is contributed by shiv1o43g


Javascript




function findLastFiveDigits(N) {
  // Modify the number as per the given arrangement of digits
  let new_N = parseInt(N.toString()[0] + N.toString()[2] + N.toString()[4] + N.toString()[3] + N.toString()[1]);
  console.log("Modified number: " + new_N);
 
  // Calculate the power of 5 of the modified number
  let power = Math.pow(new_N, 5);
  console.log("Power of 5: " + power);
 
  // Take modulo with 100000 to get the last five digits
  let lastFiveDigits = power % 100000;
  console.log("Last five digits: " + lastFiveDigits);
 
  return lastFiveDigits;
}
 
console.log(findLastFiveDigits(12345));
console.log(findLastFiveDigits(10000));


Output

Modified number: 13542
Power of 5: 455422043125550171232
Last five digits: 71232
71232
Modified number: 10000
Power of 5: 100000000000000000000
Last five digits: 0
0


The time complexity  is O(1)
The auxiliary space is also O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments