Wednesday, January 1, 2025
Google search engine
HomeData Modelling & AIFind if there is a path between two vertices in a directed...

Find if there is a path between two vertices in a directed graph | Set 2

Given a Directed Graph and two vertices in it, check whether there is a path from the first given vertex to second.

Example: 

Consider the following Graph: 
 

Input : (u, v) = (1, 3) 
Output: Yes 
Explanation: 
There is a path from 1 to 3, 1 -> 2 -> 3

Input : (u, v) = (3, 6) 
Output: No 
Explanation: 
There is no path from 3 to 6  

A BFS or DFS based solution of this problem is discussed here.
Approach: Here we will discuss a Dynamic Programming based solution using Floyd Warshall Algorithm

  • Create a boolean 2D matrix mat where mat[i][j] will be true if there is a path from vertex i to j.
  • For every starting vertex i and ending vertex j iterate over all intermediate vertex k and do check if there is a path for i to j through k then mark mat[i][j] as true.
  • Finally, check if mat[u][v] is true then return true else return false.

Below is the implementation of the above approach: 

C++




// C++ program to find if there is a
// path between two vertices in a
// directed graph using Dynamic Programming
 
#include <bits/stdc++.h>
using namespace std;
#define X 6
#define Z 2
 
// function to find if there is a
// path between two vertices in a
// directed graph
bool existPath(int V, int edges[X][Z],
               int u, int v)
{
    // dp matrix
    bool mat[V][V];
    memset(mat, false, sizeof(mat));
 
    // set dp[i][j]=true if there is
    // edge between i to j
    for (int i = 0; i < X; i++)
        mat[edges[i][0]][edges[i][1]] = true;
 
    // check for all intermediate vertex
    for (int k = 0; k < V; k++) {
        for (int i = 0; i < V; i++) {
            for (int j = 0; j < V; j++) {
 
                mat[i][j] = mat[i][j]
                            || mat[i][k]
                                   && mat[k][j];
            }
        }
    }
 
    // if vertex is invalid
    if (u >= V || v >= V) {
        return false;
    }
 
    // if there is a path
    if (mat[u][v])
        return true;
    return false;
}
 
// Driver function
int main()
{
    int V = 4;
    int edges[X][Z]
        = { { 0, 2 }, { 0, 1 },
            { 1, 2 }, { 2, 3 },
            { 2, 0 }, { 3, 3 } };
    int u = 1, v = 3;
 
    if (existPath(V, edges, u, v))
        cout << "Yes\n";
    else
        cout << "No\n";
    return 0;
}


Java




// Java program to find if there is a path
// between two vertices in a directed graph
// using Dynamic Programming
import java.util.*;
 
class GFG{
     
static final int X = 6;
static final int Z = 2;
 
// Function to find if there is a
// path between two vertices in a
// directed graph
static boolean existPath(int V, int edges[][],
                         int u, int v)
{
     
    // mat matrix
    boolean [][]mat = new boolean[V][V];
 
    // set mat[i][j]=true if there is
    // edge between i to j
    for (int i = 0; i < X; i++)
        mat[edges[i][0]][edges[i][1]] = true;
 
    // Check for all intermediate vertex
    for(int k = 0; k < V; k++)
    {
        for(int i = 0; i < V; i++)
        {
            for(int j = 0; j < V; j++)
            {
                mat[i][j] = mat[i][j] ||
                            mat[i][k] &&
                            mat[k][j];
            }
        }
    }
 
    // If vertex is invalid
    if (u >= V || v >= V)
    {
        return false;
    }
 
    // If there is a path
    if (mat[u][v])
        return true;
    return false;
}
 
// Driver code
public static void main(String[] args)
{
    int V = 4;
    int edges[][] = { { 0, 2 }, { 0, 1 },
                      { 1, 2 }, { 2, 3 },
                      { 2, 0 }, { 3, 3 } };
    int u = 1, v = 3;
 
    if (existPath(V, edges, u, v))
        System.out.print("Yes\n");
    else
        System.out.print("No\n");
}
}
 
// This code is contributed by Princi Singh


Python3




# Python3 program to find if there
# is a path between two vertices in a
# directed graph using Dynamic Programming
X = 6
Z = 2
  
# Function to find if there is a
# path between two vertices in a
# directed graph
def existPath(V, edges, u, v):
     
    # dp matrix
    mat = [[False for i in range(V)]
                  for j in range(V)]
  
    # Set dp[i][j]=true if there is
    # edge between i to j
    for i in range(X):
        mat[edges[i][0]][edges[i][1]] = True
  
    # Check for all intermediate vertex
    for k in range(V):
        for i in range(V):
            for j in range(V):
                mat[i][j] = (mat[i][j] or
                             mat[i][k] and
                             mat[k][j])
  
    # If vertex is invalid
    if (u >= V or v >= V):
        return False
  
    # If there is a path
    if (mat[u][v]):
        return True
         
    return False
 
# Driver code
V = 4
edges = [ [ 0, 2 ], [ 0, 1 ],
          [ 1, 2 ], [ 2, 3 ],
          [ 2, 0 ], [ 3, 3 ] ]
         
u, v = 1, 3
 
if (existPath(V, edges, u, v)):
    print("Yes")
else:
    print("No")
 
# This code is contributed by divyeshrabadiya07


C#




// C# program to find if there is a path
// between two vertices in a directed graph
// using Dynamic Programming
using System;
class GFG{
     
static readonly int X = 6;
static readonly int Z = 2;
 
// Function to find if there is a
// path between two vertices in a
// directed graph
static bool existPath(int V, int [,]edges,
                      int u, int v)
{
     
    // mat matrix
    bool [,]mat = new bool[V, V];
 
    // set mat[i,j]=true if there is
    // edge between i to j
    for (int i = 0; i < X; i++)
        mat[edges[i, 0], edges[i, 1]] = true;
 
    // Check for all intermediate vertex
    for(int k = 0; k < V; k++)
    {
        for(int i = 0; i < V; i++)
        {
            for(int j = 0; j < V; j++)
            {
                mat[i, j] = mat[i, j] ||
                            mat[i, k] &&
                            mat[k, j];
            }
        }
    }
 
    // If vertex is invalid
    if (u >= V || v >= V)
    {
        return false;
    }
 
    // If there is a path
    if (mat[u, v])
        return true;
    return false;
}
 
// Driver code
public static void Main(String[] args)
{
    int V = 4;
    int [,]edges = { { 0, 2 }, { 0, 1 },
                     { 1, 2 }, { 2, 3 },
                     { 2, 0 }, { 3, 3 } };
    int u = 1, v = 3;
 
    if (existPath(V, edges, u, v))
        Console.Write("Yes\n");
    else
        Console.Write("No\n");
}
}
 
// This code is contributed by sapnasingh4991


Javascript




<script>
 
// Javascript program to find if there is a path
// between two vertices in a directed graph
// using Dynamic Programming
     
var X = 6;
var Z = 2;
 
// Function to find if there is a
// path between two vertices in a
// directed graph
function existPath(V, edges, u, v)
{
     
    // mat matrix
    var mat = Array.from(Array(V), ()=>Array(V));
 
    // set mat[i,j]=true if there is
    // edge between i to j
    for (var i = 0; i < X; i++)
        mat[edges[i][0]][edges[i][1]] = true;
 
    // Check for all intermediate vertex
    for(var k = 0; k < V; k++)
    {
        for(var i = 0; i < V; i++)
        {
            for(var j = 0; j < V; j++)
            {
                mat[i][j] = mat[i][j] ||
                            mat[i][k] &&
                            mat[k][j];
            }
        }
    }
 
    // If vertex is invalid
    if (u >= V || v >= V)
    {
        return false;
    }
 
    // If there is a path
    if (mat[u][v])
        return true;
    return false;
}
 
// Driver code
var V = 4;
var edges = [ [ 0, 2 ], [ 0, 1 ],
                 [ 1, 2 ], [ 2, 3 ],
                 [ 2, 0 ], [ 3, 3 ] ];
var u = 1, v = 3;
if (existPath(V, edges, u, v))
    document.write("Yes<br>");
else
    document.write("No<br>");
 
</script>


Output: 

Yes

 

Time Complexity : O ( V 3) 
Auxiliary Space : O ( V 2)
 

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments