Sunday, October 12, 2025
HomeData Modelling & AIFind if a binary matrix exists with given row and column sums

Find if a binary matrix exists with given row and column sums

Given an array Row[] of size R where Row[i] is the sum of elements of the ith row and another array Column[] of size C where Column[i] is the sum of elements of the ith column. The task is to check if it is possible to construct a binary matrix of R * C dimension which satisfies given row sums and column sums. A binary matrix is a matrix which is filled with only 0’s and 1’s. 
Sum means the number of 1’s in particular row or column.
Examples: 

Input: Row[] = {2, 2, 2, 2, 2}, Column[] = {5, 5, 0, 0} 
Output: YES 
Matrix is 
{1, 1, 0, 0} 
{1, 1, 0, 0} 
{1, 1, 0, 0} 
{1, 1, 0, 0} 
{1, 1, 0, 0}

Input: Row[] = {0, 0, 3} Column[] = {3, 0, 0} 
Output: NO 

 

Approach: 

  1. Key idea is that any cell in the matrix will contribute equally to both row and column sum, so sum of all the row sums must be equal to column sums.
  2. Now, find the maximum of row sums, if this value is greater than the number of non zero column sums than matrix does not exist.
  3. If the maximum of column sums is greater than the number of non zero row sums than matrix is not possible to construct.
  4. If all the above 3 conditions is satisfied than matrix exists.

Below is the implementation of the above approach: 

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if matrix exists
bool matrix_exist(int row[], int column[], int r, int c)
{
    int row_sum = 0;
    int column_sum = 0;
    int row_max = -1;
    int column_max = -1;
    int row_non_zero = 0;
    int column_non_zero = 0;
 
    // Store sum of rowsums, max of row sum
    // number of non zero row sums
    for (int i = 0; i < r; i++) {
        row_sum += row[i];
        row_max = max(row_max, row[i]);
        if (row[i])
            row_non_zero++;
    }
 
    // Store sum of column sums, max of column sum
    // number of non zero column sums
    for (int i = 0; i < c; i++) {
        column_sum += column[i];
        column_max = max(column_max, column[i]);
        if (column[i])
            column_non_zero++;
    }
 
    // Check condition 1, 2, 3
    if ((row_sum != column_sum) ||
        (row_max > column_non_zero) ||
        (column_max > row_non_zero))
        return false;
 
    return true;
}
 
// Driver Code
int main()
{
    int row[] = { 2, 2, 2, 2, 2 };
    int column[] = { 5, 5, 0, 0 };
    int r = sizeof(row) / sizeof(row[0]);
    int c = sizeof(column) / sizeof(column[0]);
 
    if (matrix_exist(row, column, r, c))
        cout << "YES\n";
    else
        cout << "NO\n";
}


Java




// Java implementation of above approach
import java.util.*;
 
class GFG
{
 
    // Function to check if matrix exists
    static boolean matrix_exist(int row[], int column[],
                                        int r, int c)
    {
        int row_sum = 0;
        int column_sum = 0;
        int row_max = -1;
        int column_max = -1;
        int row_non_zero = 0;
        int column_non_zero = 0;
 
        // Store sum of rowsums, max of row sum
        // number of non zero row sums
        for (int i = 0; i < r; i++)
        {
            row_sum += row[i];
            row_max = Math.max(row_max, row[i]);
            if (row[i] > 0)
            {
                row_non_zero++;
            }
        }
 
        // Store sum of column sums, max of column sum
        // number of non zero column sums
        for (int i = 0; i < c; i++)
        {
            column_sum += column[i];
            column_max = Math.max(column_max, column[i]);
            if (column[i] > 0)
            {
                column_non_zero++;
            }
        }
 
        // Check condition 1, 2, 3
        if ((row_sum != column_sum)
                || (row_max > column_non_zero)
                || (column_max > row_non_zero))
        {
            return false;
        }
 
        return true;
    }
 
// Driver Code
public static void main(String[] args)
{
    int row[] = { 2, 2, 2, 2, 2 };
    int column[] = { 5, 5, 0, 0 };
    int r = row.length;
    int c = column.length;
 
    if (matrix_exist(row, column, r, c))
        System.out.println("Yes");
    else
        System.out.println("No");
}
}
 
// This code has been contributed by 29AjayKumar


Python3




# Python implementation of the above approach
 
# Function to check if matrix exists
def matrix_exist(row,  column,  r, c):
 
    row_sum = 0
    column_sum = 0
    row_max = -1
    column_max = -1
    row_non_zero = 0
    column_non_zero = 0
 
    # Store sum of rowsums, max of row sum
    # number of non zero row sums
    for i in range(r):
        row_sum += row[i]
        row_max = max(row_max, row[i])
        if (row[i]):
            row_non_zero = row_non_zero + 1
 
    # Store sum of column sums, max of column sum
    # number of non zero column sums
    for i in range(c):
        column_sum = column_sum + column[i]
        column_max = max(column_max, column[i])
        if (column[i]):
            column_non_zero = column_non_zero + 1
 
    # Check condition 1, 2, 3
    if ((row_sum != column_sum)
        or (row_max > column_non_zero)
        or (column_max > row_non_zero)):
         
        return False
 
    return True
 
# Driver Code
if __name__ == '__main__':
    row = [2, 2, 2, 2, 2]
    column = [5, 5, 0, 0]
    r = len(row)
    c = len(column)
    if matrix_exist(row, column, r, c):
        print("YES")
 
    else:
        print("NO")
 
# this code is contributed by nirajgusain5


C#




// C# implementation of above approach
using System;
 
public class GFG{
 
    // Function to check if matrix exists
    static bool matrix_exist(int[] row, int[] column,
                                        int r, int c)
    {
        int row_sum = 0;
        int column_sum = 0;
        int row_max = -1;
        int column_max = -1;
        int row_non_zero = 0;
        int column_non_zero = 0;
 
        // Store sum of rowsums, max of row sum
        // number of non zero row sums
        for (int i = 0; i < r; i++)
        {
            row_sum += row[i];
            row_max = Math.Max(row_max, row[i]);
            if (row[i] > 0)
            {
                row_non_zero++;
            }
        }
 
        // Store sum of column sums, max of column sum
        // number of non zero column sums
        for (int i = 0; i < c; i++)
        {
            column_sum += column[i];
            column_max = Math.Max(column_max, column[i]);
            if (column[i] > 0)
            {
                column_non_zero++;
            }
        }
 
        // Check condition 1, 2, 3
        if ((row_sum != column_sum)
                || (row_max > column_non_zero)
                || (column_max > row_non_zero))
        {
            return false;
        }
 
        return true;
    }
 
    // Driver Code
    static public void Main ()
    {
        int[] row = { 2, 2, 2, 2, 2 };
        int[] column = { 5, 5, 0, 0 };
        int r = row.Length;
        int c = column.Length;
     
        if (matrix_exist(row, column, r, c))
            Console.Write("YES");
        else
            Console.Write("NO");
    }
}
 
// This code has been contributed by shubhamsingh10


Javascript




<script>
 
// Javascript implementation of the above approach
 
// Function to check if matrix exists
function matrix_exist(row, column, r, c)
{
    var row_sum = 0;
    var column_sum = 0;
    var row_max = -1;
    var column_max = -1;
    var row_non_zero = 0;
    var column_non_zero = 0;
 
    // Store sum of rowsums, max of row sum
    // number of non zero row sums
    for (var i = 0; i < r; i++) {
        row_sum += row[i];
        row_max = Math.max(row_max, row[i]);
        if (row[i])
            row_non_zero++;
    }
 
    // Store sum of column sums, max of column sum
    // number of non zero column sums
    for (var i = 0; i < c; i++) {
        column_sum += column[i];
        column_max = Math.max(column_max, column[i]);
        if (column[i])
            column_non_zero++;
    }
 
    // Check condition 1, 2, 3
    if ((row_sum != column_sum) ||
        (row_max > column_non_zero) ||
        (column_max > row_non_zero))
        return false;
 
    return true;
}
 
// Driver Code
var row = [2, 2, 2, 2, 2];
var column = [5, 5, 0, 0];
var r = row.length;
var c = column.length;
if (matrix_exist(row, column, r, c))
    document.write( "YES");
else
    document.write( "NO");
 
</script>


Output: 

YES

 

Time Complexity : O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32352 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6720 POSTS0 COMMENTS
Nicole Veronica
11885 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11941 POSTS0 COMMENTS
Shaida Kate Naidoo
6840 POSTS0 COMMENTS
Ted Musemwa
7104 POSTS0 COMMENTS
Thapelo Manthata
6795 POSTS0 COMMENTS
Umr Jansen
6794 POSTS0 COMMENTS