Sunday, October 19, 2025
HomeData Modelling & AIFind Harmonic mean using Arithmetic mean and Geometric mean

Find Harmonic mean using Arithmetic mean and Geometric mean

Given two numbers, first calculate arithmetic mean and geometric mean of these two numbers. Using the arithmetic mean and geometric mean so calculated, find the harmonic mean between the two numbers.

Examples: 

Input : a = 2
        b = 4
Output : 2.666

Input : a = 5
        b = 15
Output : 7.500

Arithmetic Mean: Arithmetic Mean ‘AM’ between two numbers a and b is such a number that AM-a = b-AM. Thus, if we are given these two numbers, the arithmetic mean AM = 1/2(a+b)
Geometric Mean: Geometric Mean ‘GM’ between two numbers a and b is such a number that GM/a = b/GM. Thus, if we are given these two numbers, the geometric mean GM = sqrt(a*b)
Harmonic Mean: Harmonic Mean ‘HM’ between two numbers a and b is such a number that 1/HM – 1/a = 1/b – 1/HM. Thus, if we are given these two numbers, the harmonic mean HM = 2ab/a+b
Now, we also know that GM^2 = AM * HM

C++




// C++ implementation of computation  of
// arithmetic mean, geometric mean
// and harmonic mean
#include <bits/stdc++.h>
using namespace std;
  
// Function to calculate arithmetic 
// mean, geometric mean and harmonic mean
double compute(int a, int b)
{
  
    double AM, GM, HM;
  
    AM = (a + b) / 2;
    GM = sqrt(a * b);
    HM = (GM * GM) / AM;
    return HM;
}
  
// Driver function
int main()
{
  
    int a = 5, b = 15;
    double HM = compute(a, b);
    cout << "Harmonic Mean between " << a 
          << " and " << b << " is " << HM ;
    return 0;
}


Java




// Java implementation of computation  of
// arithmetic mean, geometric mean
// and harmonic mean
import java.io.*;
  
class neveropen {
      
    // Function to calculate arithmetic 
    // mean, geometric mean and harmonic mean
    static double compute(int a, int b)
    {
  
        double AM, GM, HM;
  
        AM = (a + b) / 2;
        GM = Math.sqrt(a * b);
        HM = (GM * GM) / AM;
        return HM;
    }
      
    // Driver function
    public static void main(String args[])
    {
        int a = 5, b = 15;
        double HM = compute(a, b);
        String str = "";
        str = str + HM;
        System.out.print("Harmonic Mean between "  
                         + a + " and " + b + " is "  
                         + str.substring(0, 5));
    }
}


Python3




# Python 3 implementation of computation 
# of arithmetic mean, geometric mean
# and harmonic mean
  
import math 
  
# Function to calculate arithmetic 
# mean, geometric mean and harmonic mean
def compute( a, b) :
    AM = (a + b) / 2
    GM = math.sqrt(a * b)
    HM = (GM * GM) / AM
    return HM
  
# Driver function
a = 5
b = 15
HM = compute(a, b)
print("Harmonic Mean between " , a,
      " and ", b , " is " , HM )
  
  
# This code is contributed by Nikita Tiwari.


C#




// C# implementation of computation  of
// arithmetic mean, geometric mean
// and harmonic mean
using System;
  
class neveropen {
      
    // Function to calculate arithmetic 
    // mean, geometric mean and harmonic mean
    static double compute(int a, int b)
    {
  
        double AM, GM, HM;
  
        AM = (a + b) / 2;
        GM = Math.Sqrt(a * b);
        HM = (GM * GM) / AM;
        return HM;
    }
      
    // Driver function
    public static void Main()
    {
        int a = 5, b = 15;
        double HM = compute(a, b);
        Console.WriteLine("Harmonic Mean between "
                        + a + " and " + b + " is "
                        +HM);
    }
}
// This code is contributed by mits


PHP




<?php
// PHP implementation of computation  of
// arithmetic mean, geometric mean
// and harmonic mean
  
// Function to calculate arithmetic 
// mean, geometric mean and harmonic mean
function compute( $a, $b)
{
  
    $AM;
    $GM;
    $HM;
  
    $AM = ($a + $b) / 2;
    $GM = sqrt($a * $b);
    $HM = ($GM * $GM) / $AM;
    return $HM;
}
  
// Driver Code
    $a = 5;
    $b = 15;
    $HM = compute($a, $b);
    echo"Harmonic Mean between " .$a.
        " and " .$b. " is " .$HM ;
    return 0;
// This code is contributed by nitin mittal.
?>


Javascript




<script>
   
// Javascript implementation of computation 
// of arithmetic mean, geometric mean
// and harmonic mean
   
// Function to calculate arithmetic 
// mean, geometric mean and harmonic mean
function compute(a, b)
{
    var AM = (a + b) / 2;
    var GM = Math.sqrt(a * b);
    var HM = (GM * GM) / AM;
      
    return HM;
}
  
// Driver Code
var a = 5;
var b = 15;
var HM = compute(a, b)
  
document.write("Harmonic Mean between "
               a + " and " +  b  + " is " +
               HM.toFixed(3));
                 
// This code is contributed by bunnyram19 
  
</script>


Output: 

Harmonic Mean between 5 and 15 is 7.500

Time Complexity: O(log(a*b)), for using sqrt function where a and b represents the given integers. 
Auxiliary Space: O(1), no extra space is required, so it is a constant.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32361 POSTS0 COMMENTS
Milvus
88 POSTS0 COMMENTS
Nango Kala
6728 POSTS0 COMMENTS
Nicole Veronica
11892 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11954 POSTS0 COMMENTS
Shaida Kate Naidoo
6852 POSTS0 COMMENTS
Ted Musemwa
7113 POSTS0 COMMENTS
Thapelo Manthata
6805 POSTS0 COMMENTS
Umr Jansen
6801 POSTS0 COMMENTS