Given an array, arr[] of size N, Given M queries and each query consisting of a number X, the task is to subtract X from every element of arr[] for each query and print the Greatest Common Divisor of all elements of arr[].
Examples:
Input: arr[] = {9, 13, 17, 25}, Q[] = {1, 3, 5, 9}
Output: 4 2 4 4
Explanation: First Query: GCD(9 – 1, 13 -1, 17 – 1, 25 – 1) = GCD(8, 12, 16, 24) = 4
Second Query: GCD(9 – 3, 13 – 3, 17 – 3, 25 – 3) = GCD(6, 10, 14, 22) = 2
Third Query: GCD(9 – 5, 13 – 5, 17 – 5, 25 – 5) = GCD(4, 8, 12, 20) = 4
Fourth Query: GCD(9 – 9, 13 – 9, 17 – 9, 25 – 9) = GCD(0, 4, 8,, 16) = 4Input: arr[] = {1 25 121 169}, Q[] = {1 2 7 23}
Output: 24 1 6 2
Naive approach: The basic way to solve the problem is as follows:
For each query Iterate through every element of arr[] and keep track of GCD.
Time Complexity: O(N * M * logD) where D is the maximum value of the array
Auxiliary Space: O(1)
Efficient Approach: The problem can be solved based on the following idea:
Property of Euclidean Algorithm for finding GCD can be used which is GCD(a, b) = GCD(a, b – a). For multiple numbers idea can be generalized as GCD(a, b, c, …) = GCD(a, b – a, c – a, …).
Follow the steps below to solve the problem:
- To calculate GCD(arr[0] – X, arr[1] – X, arr[2] – X, . . ., arr[N – 1] – X), subtract arr[0] – X from other Numbers.
- Then, GCD (arr[0] – X, arr[1] – X, arr[2] – X, . . ., arr[N – 1] – X) = GCD(arr[0] – X, arr[1] – arr[0], arr[2] – arr[0], . . ., arr[N – 1] – arr[0]).
- Find T = GCD( arr[1] – arr[0], arr[2] – arr[0], . . ., arr[N – 1] – arr[0]), then gcd for every query can be calculated to be GCD(arr[0] – X, T).
- For each query print the absolute of GCD(X, T) (print absolute since the answer can be negative after subtraction).
Below is the implementation of the above approach:
C++
// C++ code to implement the approach #include <bits/stdc++.h> using namespace std; // Function to Calculate GCD for each query vector< int > findGCDBySubtractingX( int arr[], int Q[], int N, int M) { int T = 0; vector< int > res; // Find GCD of arr[1] - arr[0], arr[2] - arr[0], // . . ., arr[N - 1] - arr[0] for ( int i = 1; i < N; i++) { T = __gcd(T, arr[i] - arr[0]); } // Iterating for each of M Queries for ( int j = 0; j < M; j++) { int X = Q[j]; // Finding GCD for each query with // their absolute since subtraction // can be negative res.push_back( abs (__gcd(T, arr[0] - X))); } return res; } // Driver Code int main() { // Input int arr[] = { 9, 13, 17, 25 }, Q[] = { 1, 3, 5, 9 }; int N = sizeof (arr) / sizeof (arr[0]); int M = sizeof (Q) / sizeof (Q[0]); // Function Call vector< int > ans = findGCDBySubtractingX(arr, Q, N, M); for ( int x : ans) cout << x << " " ; return 0; } |
Java
// Java code to implement the approach import java.io.*; import java.util.*; class GFG { static int gcd( int a, int b) { if (b == 0 ) return a; return gcd(b, a % b); } // Function to Calculate GCD for each query public static List<Integer> findGCDBySubtractingX( int [] arr, int [] Q, int N, int M) { int T = 0 ; List<Integer> res = new ArrayList<>(); // Find GCD of arr[1] - arr[0], arr[2] - arr[0], // . . ., arr[N - 1] - arr[0] for ( int i = 1 ; i < N; i++) { T = gcd(T, arr[i] - arr[ 0 ]); } // Iterating for each of M Queries for ( int j = 0 ; j < M; j++) { int X = Q[j]; // Finding GCD for each query with // their absolute since subtraction // can be negative res.add(Math.abs(gcd(T, arr[ 0 ] - X))); } return res; } // Driver Code public static void main(String[] args) { // Input int [] arr = { 9 , 13 , 17 , 25 }; int [] Q = { 1 , 3 , 5 , 9 }; int N = arr.length; int M = Q.length; // Function Call List<Integer> ans = findGCDBySubtractingX(arr, Q, N, M); for ( int x : ans) System.out.print(x + " " ); } } // This code is contributed by lokeshmvs21. |
Python3
import math def findGCDBySubtractingX(arr, q, n, m): t = 0 res = [] # find the gcd of arr[1]-arr[0] # .... arr[n-1]-arr[0] for i in range ( 1 , n): t = math.gcd(t, arr[i] - arr[ 0 ]) # Iterating for each of m queries for j in range (m): x = q[j] # finding the gcd for each query with # their absolute since subtraction # can be negative res.append( abs (math.gcd(t, arr[ 0 ] - x))) return res arr = [ 9 , 13 , 17 , 25 ] q = [ 1 , 3 , 5 , 9 ] n = len (arr) m = len (q) ans = findGCDBySubtractingX(arr, q, n, m) for x in ans: print (x, end = " " ) |
C#
// C# code to implement the approach using System; using System.Collections.Generic; public class GFG { static int gcd( int a, int b) { if (b == 0) return a; return gcd(b, a % b); } // Function to Calculate GCD for each query public static List< int > findGCDBySubtractingX( int [] arr, int [] Q, int N, int M) { int T = 0; List< int > res = new List< int >(); // Find GCD of arr[1] - arr[0], arr[2] - arr[0], // . . ., arr[N - 1] - arr[0] for ( int i = 1; i < N; i++) { T = gcd(T, arr[i] - arr[0]); } // Iterating for each of M Queries for ( int j = 0; j < M; j++) { int X = Q[j]; // Finding GCD for each query with // their absolute since subtraction // can be negative res.Add(Math.Abs(gcd(T, arr[0] - X))); } return res; } static public void Main() { // Input int [] arr = { 9, 13, 17, 25 }; int [] Q = { 1, 3, 5, 9 }; int N = arr.Length; int M = Q.Length; // Function Call List< int > ans = findGCDBySubtractingX(arr, Q, N, M); foreach ( int x in ans) Console.Write(x + " " ); } } // This code is contributed by lokesh. |
Javascript
// JavaScript code to implement the approach // function to find gcd function __gcd(a, b) { if (b==0) return a; else return __gcd(b, a%b); } // Function to Calculate GCD for each query function findGCDBySubtractingX(arr, Q, N, M) { let T = 0; let res=[]; // Find GCD of arr[1] - arr[0], arr[2] - arr[0], // . . ., arr[N - 1] - arr[0] for (let i = 1; i < N; i++) { T = __gcd(T, arr[i] - arr[0]); } // Iterating for each of M Queries for (let j = 0; j < M; j++) { let X = Q[j]; // Finding GCD for each query with // their absolute since subtraction // can be negative res.push(Math.abs(__gcd(T, arr[0] - X))); } return res; } // Driver Code // Input let arr = [ 9, 13, 17, 25 ], Q = [ 1, 3, 5, 9 ]; let N = arr.length; let M = Q.length; // Function Call let ans = findGCDBySubtractingX(arr, Q, N, M); for (let x of ans) console.log(x + " " ); // This code is contributed by poojaagarwal2. |
4 2 4 4
Time Complexity: O(N * logD + M * logD) where D is the maximum element in the array
Auxiliary Space: O(1)
Related Articles:
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!