Given an array of integers, find the elements from the array whose frequency lies in the range [l, r].
Examples:
Input : arr[] = { 1, 2, 3, 3, 2, 2, 5 } l = 2, r = 3 Output : 2 3 3 2 2
Approach :
- Take a hash map, which will store the frequency of all the elements in the array.
- Now, traverse once again.
- Print the elements whose frequency lies between the range [l, r].
C++
// C++ program to find the elements whose // frequency lies in the range [l, r] #include "iostream" #include "unordered_map" using namespace std; void findElements( int arr[], int n, int l, int r) { // Hash map which will store the // frequency of the elements of the array. unordered_map< int , int > mp; for ( int i = 0; i < n; ++i) { // Increment the frequency // of the element by 1. mp[arr[i]]++; } for ( int i = 0; i < n; ++i) { // Print the element whose frequency // lies in the range [l, r] if (l <= mp[arr[i]] && mp[arr[i] <= r]) { cout << arr[i] << " " ; } } } int main() { int arr[] = { 1, 2, 3, 3, 2, 2, 5 }; int n = sizeof (arr) / sizeof (arr[0]); int l = 2, r = 3; findElements(arr, n, l, r); return 0; } |
Java
import java.util.HashMap; import java.util.Map; // Java program to find the elements whose // frequency lies in the range [l, r] public class GFG { static void findElements( int arr[], int n, int l, int r) { // Hash map which will store the // frequency of the elements of the array. Map<Integer, Integer> mp = new HashMap<Integer, Integer>(); for ( int i = 0 ; i < n; ++i) { // Increment the frequency // of the element by 1. int a= 0 ; if (mp.get(arr[i])== null ){ a= 1 ; } else { a = mp.get(arr[i])+ 1 ; } mp.put(arr[i], a); } for ( int i = 0 ; i < n; ++i) { // Print the element whose frequency // lies in the range [l, r] if (l <= mp.get(arr[i]) && (mp.get(arr[i]) <= r)) { System.out.print(arr[i] + " " ); } } } public static void main(String[] args) { int arr[] = { 1 , 2 , 3 , 3 , 2 , 2 , 5 }; int n = arr.length; int l = 2 , r = 3 ; findElements(arr, n, l, r); } } /*This code is contributed by PrinciRaj1992*/ |
Python3
# Python 3 program to find the elements whose # frequency lies in the range [l, r] def findElements(arr, n, l, r): # Hash map which will store the # frequency of the elements of the array. mp = {i: 0 for i in range ( len (arr))} for i in range (n): # Increment the frequency # of the element by 1. mp[arr[i]] + = 1 for i in range (n): # Print the element whose frequency # lies in the range [l, r] if (l < = mp[arr[i]] and mp[arr[i] < = r]): print (arr[i], end = " " ) # Driver Code if __name__ = = '__main__' : arr = [ 1 , 2 , 3 , 3 , 2 , 2 , 5 ] n = len (arr) l = 2 r = 3 findElements(arr, n, l, r) # This code is contributed by # Shashank_Sharma |
C#
// C# program to find the elements whose // frequency lies in the range [l, r] using System; using System.Collections.Generic; class GFG { static void findElements( int []arr, int n, int l, int r) { // Hash map which will store the // frequency of the elements of the array. Dictionary< int , int > mp = new Dictionary< int , int >(); for ( int i = 0; i < n; ++i) { // Increment the frequency // of the element by 1. int a = 0; if (!mp.ContainsKey(arr[i])) { a = 1; } else { a = mp[arr[i]]+1; } if (!mp.ContainsKey(arr[i])) { mp.Add(arr[i], a); } else { mp.Remove(arr[i]); mp.Add(arr[i], a); } } for ( int i = 0; i < n; ++i) { // Print the element whose frequency // lies in the range [l, r] if (mp.ContainsKey(arr[i]) && l <= mp[arr[i]] && (mp[arr[i]] <= r)) { Console.Write(arr[i] + " " ); } } } // Driver code public static void Main(String[] args) { int []arr = {1, 2, 3, 3, 2, 2, 5}; int n = arr.Length; int l = 2, r = 3; findElements(arr, n, l, r); } } // This code has been contributed by 29AjayKumar |
Javascript
<script> // Javascript program to find the elements whose // frequency lies in the range [l, r] function findElements(arr, n, l, r) { // Hash map which will store the // frequency of the elements of the array. let mp = new Map(); for (let i = 0; i < n; ++i) { // Increment the frequency // of the element by 1. let a = 0; if (mp.get(arr[i]) == null ) { a = 1; } else { a = mp.get(arr[i]) + 1; } mp.set(arr[i], a); } for (let i = 0; i < n; ++i) { // Print the element whose frequency // lies in the range [l, r] if (l <= mp.get(arr[i]) && (mp.get(arr[i]) <= r)) { document.write(arr[i] + " " ); } } } // Driver Code let arr = [ 1, 2, 3, 3, 2, 2, 5 ]; let n = arr.length; let l = 2, r = 3; findElements(arr, n, l, r); // This code is contributed by code_hunt </script> |
2 3 3 2 2
Time Complexity: O(N)
Auxiliary space: O(N)
Efficient Approach( Space optimization): we can use binary search . First sort the whole array for binary search function and then find frequency of all array element . Then check if the frequency of array element lies in the range [L,R]. If lies , then print that element .
Below is the implementation of the above approach:
C++
// C++ implementation of the above approach #include <bits/stdc++.h> using namespace std; // Function to print elements that frequency // lies in the range [L,R] void findElements( int *arr, int n , int l , int r) { sort(arr,arr+n); //sort array for binary search for ( int i = 0 ; i < n ;i++) { //index of first and last occ of arr[i] using binary //search Upper and lower bound function int first_index = lower_bound(arr,arr+n,arr[i])- arr; int last_index = upper_bound(arr,arr+n,arr[i])- arr-1; int fre = last_index-first_index+1; //finding frequency if (fre >= l and fre <=r) { //printing element if its frequency lies in the range [L,R] cout << arr[i] << " " ; } } } // Drive code int main() { int arr[] = { 1, 2, 3, 3, 2, 2, 5 }; int n = sizeof (arr) / sizeof (arr[0]); int l = 2, r = 3; // Function call findElements( arr, n, l , r ); return 0; } // This Approach is contributed by nikhilsainiofficial546 |
Java
// Java implementation of the above approach import java.util.*; public class FrequencyRange { // Function to print elements that frequency // lies in the range [L,R] static void findElements( int [] arr, int n, int l, int r) { Arrays.sort(arr); // sort array for binary search for ( int i = 0 ; i < n; i++) { // index of first and last occ of arr[i] using // binary search Upper and lower bound function int first_index = Arrays.binarySearch(arr, arr[i]); int last_index = Arrays.binarySearch(arr, arr[i]); while (first_index > 0 && arr[first_index - 1 ] == arr[i]) { first_index--; } while (last_index < n - 1 && arr[last_index + 1 ] == arr[i]) { last_index++; } int fre = last_index - first_index + 1 ; // finding frequency if (fre >= l && fre <= r) { // printing element if its // frequency lies in the // range [L,R] System.out.print(arr[i] + " " ); } } } // Driver's code public static void main(String[] args) { int [] arr = { 1 , 2 , 3 , 3 , 2 , 2 , 5 }; int n = arr.length; int l = 2 , r = 3 ; // Function call findElements(arr, n, l, r); } } |
Python3
import bisect # Function to print elements whose frequency # lies in the range [L,R] def findElements(arr, n, l, r): arr.sort() # sort array for binary search for i in range (n): # index of first and last occ of arr[i] using binary # search Upper and lower bound function first_index = bisect.bisect_left(arr, arr[i]) last_index = bisect.bisect_right(arr, arr[i]) fre = last_index - first_index # finding frequency if fre > = l and fre < = r: # printing element if its frequency lies in the range [L,R] print ( str (arr[i]), end = " " ) print () # Driver code arr = [ 1 , 2 , 3 , 3 , 2 , 2 , 5 ] n = len (arr) l = 2 r = 3 # Function call findElements(arr, n, l , r) |
C#
using System; class Program { static void findElements( int [] arr, int n, int l, int r) { Array.Sort(arr); // sort array for binary search for ( int i = 0; i < n; i++) { // index of first and last occ of arr[i] using binary // search Upper and lower bound function int first_index = Array.BinarySearch(arr, arr[i]); while (first_index > 0 && arr[first_index - 1] == arr[i]) { first_index--; } int last_index = Array.BinarySearch(arr, arr[i]); while (last_index < n - 1 && arr[last_index + 1] == arr[i]) { last_index++; } int fre = last_index - first_index + 1; // finding frequency if (fre >= l && fre <= r) { // printing element if its frequency lies in the range [L,R] Console.Write(arr[i] + " " ); } } } static void Main() { int [] arr = { 1, 2, 3, 3, 2, 2, 5 }; int n = arr.Length; int l = 2, r = 3; // Function call findElements(arr, n, l, r); } } |
Javascript
// Function to print elements that frequency // lies in the range [L,R] function findElements(arr, n, l, r) { arr.sort(); // sort array for binary search for (let i = 0; i < n; i++) { // index of first and last occ of arr[i] using binary // search Upper and lower bound function const first_index = arr.indexOf(arr[i]); const last_index = arr.lastIndexOf(arr[i]); const fre = last_index - first_index + 1; // finding frequency if (fre >= l && fre <= r) { // printing element if its frequency lies in the range [L,R] console.log(arr[i] + " " ); } } } // Drive code const arr = [1, 2, 3, 3, 2, 2, 5]; const n = arr.length; const l = 2; const r = 3; // Function call findElements(arr, n, l , r); |
2 2 2 3 3
Time Complexity: O(N*Log2N)
Auxiliary space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!