Prerequisites: Matplotlib, Scipy
In this article, we will see how to find all ‘x’ point above 0 with the help of find_peaks( ) function, that takes a 1-D array and finds all local maxima by a simple comparison of neighboring values.
Approach:
- Import required module.
- Find peaks inside a signal based on find_peaks() properties.
- Label the graph.
- Display Graph.
Step 1: Import all libraries.
Python3
import matplotlib.pyplot as plt import numpy as np from scipy.signal import find_peaks from scipy import signal |
Step 2: electrocardiogram(): The returned signal is a 5-minute-long electrocardiogram (ECG), a medical recording of the heart’s electrical activity, sampled at 360 Hz.
Syntax:
scipy.signal.find_peaks(x, height=None)
Parameter:
- x: A signal with peaks.
- height: Required height of peaks. Either a number, None,
Return:
peaks: Indices of peaks in x that satisfy all given conditions.
peak_heights: If the height is given, the height of each peak is x.
Python3
import matplotlib.pyplot as plt import numpy as np from scipy.signal import find_peaks from scipy import signal t = np.linspace( 0 , 1 , 500 , endpoint = False ) sig = np.sin( 2 * np.pi * t) x = signal.square( 2 * np.pi * 30 * t, duty = (sig + 1 ) / 2 ) peak, _ = find_peaks(x, height = 0 ) |
Below is the full Implementation:
Python3
import matplotlib.pyplot as plt import numpy as np from scipy.signal import find_peaks from scipy import signal t = np.linspace( 0 , 1 , 500 , endpoint = False ) sig = np.sin( 2 * np.pi * t) x = signal.square( 2 * np.pi * 30 * t, duty = (sig + 1 ) / 2 ) peak, _ = find_peaks(x, height = 0 ) plt.plot(x) plt.title( "Find peaks inside a signal - GeeksforLazyroar" ) plt.plot(peak, x[peak], "x" , color = 'r' ) plt.plot(np.zeros_like(x), "--" , color = "black" ) plt.show() |
Output: