Friday, December 27, 2024
Google search engine
HomeData Modelling & AIFind all factors of a Natural Number in sorted order

Find all factors of a Natural Number in sorted order

Given a natural number n, print all distinct divisors of it.

Examples: 

 Input : n = 10       
 Output: 1 2 5 10

 Input:  n = 100
 Output: 1 2 4 5 10 20 25 50 100

 Input:  n = 125
 Output: 1 5 25 125 
Recommended Practice

We strongly recommend referring to the below article as a prerequisite. 
Find all divisors of a natural number | Set 1
In the above post, we found a way to find all the divisors in O(sqrt(n)).
However there is still a minor problem with the solution, can you guess? 
Yes! the output is not in a sorted fashion which we had got using the brute-force technique.

How to print the output in sorted order? 
If we observe the output which we had got, we can analyze that the divisors are printed in a zig-zag fashion (small, large pairs). Hence, if we store half of them, we can print them in sorted order. 

Algorithm:

  •  Define a method named “printDivisors” with a void return type that takes an integer value as an input variable.
  •  Initialize a Vector “v” to store half of the divisors.
  • Start a for loop and iterate through all the numbers from 1 to the square root of “n”.
    • now, inside the loop Check if the remainder of “n” divided by the current iteration variable “i” is 0. If true, then proceed to the next step:
      • Check if the divisors are equal by comparing “n/i” and “i”. If equal, then print the divisor “i”
      •  Otherwise, print the divisor “i” and add “n/i” to the vector “v”.
  •  Now start another for loop and iterate through the vector “v” in reverse order and print each element. 

Below is an implementation for the same: 

C++




// A O(sqrt(n)) program that prints all divisors
// in sorted order
#include <bits/stdc++.h>
using namespace std;
 
// function to print the divisors
void printDivisors(int n)
{
    // Vector to store half of the divisors
    vector<int> v;
    for (int i = 1; i <= sqrt(n); i++) {
        if (n % i == 0) {
 
            // check if divisors are equal
            if (n / i == i)
                printf("%d ", i);
            else {
                printf("%d ", i);
 
                // push the second divisor in the vector
                v.push_back(n / i);
            }
        }
    }
 
    // The vector will be printed in reverse
    for (int i = v.size() - 1; i >= 0; i--)
        printf("%d ", v[i]);
}
 
/* Driver program to test above function */
int main()
{
    printf("The divisors of 100 are: \n");
    printDivisors(100);
    return 0;
}


Java




// A O(sqrt(n)) java program that prints all divisors
// in sorted order
 
import java.util.Vector;
 
class Test {
    // method to print the divisors
    static void printDivisors(int n)
    {
        // Vector to store half of the divisors
        Vector<Integer> v = new Vector<>();
        for (int i = 1; i <= Math.sqrt(n); i++) {
            if (n % i == 0) {
 
                // check if divisors are equal
                if (n / i == i)
                    System.out.printf("%d ", i);
                else {
                    System.out.printf("%d ", i);
 
                    // push the second divisor in the vector
                    v.add(n / i);
                }
            }
        }
 
        // The vector will be printed in reverse
        for (int i = v.size() - 1; i >= 0; i--)
            System.out.printf("%d ", v.get(i));
    }
 
    // Driver method
    public static void main(String args[])
    {
        System.out.println("The divisors of 100 are: ");
        printDivisors(100);
    }
}


Python3




# A O(sqrt(n)) java program that prints
# all divisors in sorted order
import math
 
# Method to print the divisors
 
 
def printDivisors(n):
    list = []
 
    # List to store half of the divisors
    for i in range(1, int(math.sqrt(n) + 1)):
 
        if (n % i == 0):
 
            # Check if divisors are equal
            if (n / i == i):
                print(i, end=" ")
            else:
                # Otherwise print both
                print(i, end=" ")
                list.append(int(n / i))
 
    # The list will be printed in reverse
    for i in list[::-1]:
        print(i, end=" ")
 
 
# Driver method
print("The divisors of 100 are: ")
printDivisors(100)
 
# This code is contributed by Gitanjali


C#




// A O(sqrt(n)) C# program that
// prints all divisors in sorted order
using System;
 
class GFG {
 
    // method to print the divisors
    static void printDivisors(int n)
    {
        // Vector to store half
        // of the divisors
        int[] v = new int[n];
        int t = 0;
        for (int i = 1; i <= Math.Sqrt(n); i++) {
            if (n % i == 0) {
 
                // check if divisors are equal
                if (n / i == i)
                    Console.Write(i + " ");
                else {
                    Console.Write(i + " ");
 
                    // push the second divisor
                    // in the vector
                    v[t++] = n / i;
                }
            }
        }
 
        // The vector will be
        // printed in reverse
        for (int i = t - 1; i >= 0; i--)
            Console.Write(v[i] + " ");
    }
 
    // Driver Code
    public static void Main()
    {
        Console.Write("The divisors of 100 are: \n");
        printDivisors(100);
    }
}
 
// This code is contributed
// by ChitraNayal


PHP




<?php
// A O(sqrt(n)) program that
// prints all divisors in
// sorted order
 
// function to print
// the divisors
function printDivisors($n)
{
    // Vector to store half
    // of the divisors
    $v;
    $t = 0;
    for ($i = 1;
         $i <= (int)sqrt($n); $i++)
    {
        if ($n % $i == 0)
        {
            // check if divisors are equal
            if ((int)$n / $i == $i)
                echo $i . " ";
            else
            {
                echo $i . " ";
 
                // push the second
                // divisor in the vector
                $v[$t++] = (int)$n / $i;
            }
        }
    }
 
    // The vector will be
    // printed in reverse
    for ($i = count($v) - 1;
         $i >= 0; $i--)
        echo $v[$i] . " ";
}
 
// Driver code
echo "The divisors of 100 are: \n";
printDivisors(100);
 
// This code is contributed by mits
?>


Javascript




<script>
 
// A O(sqrt(n)) program that
// prints all divisors in
// sorted order
 
// function to print
// the divisors
function printDivisors(n)
{
    // Vector to store half
    // of the divisors
    let v = [];
    let t = 0;
    for (let i = 1;
         i <= parseInt(Math.sqrt(n)); i++)
    {
        if (n % i == 0)
        {
            // check if divisors are equal
            if (parseInt(n / i) == i)
                document.write(i + " ");
            else
            {
                document.write(i + " ");
 
                // push the second
                // divisor in the vector
                v[t++] = parseInt(n / i);
            }
        }
    }
 
    // The vector will be
    // printed in reverse
    for (let i = v.length - 1;
         i >= 0; i--){
         document.write(v[i] + " ");
    }
}
 
// Driver code
document.write("The divisors of 100 are: \n");
printDivisors(100);
 
// This code is contributed by _saurabh_jaiswal
 
</script>


Output

The divisors of 100 are: 
1 2 4 5 10 20 25 50 100 

Time Complexity : O(sqrt(n)) 
Auxiliary Space : O(sqrt(n))

Method 2 :

Approach: In the below approach using for loop we are first printing the numbers only which gives the remainder as 0 and once we break the loop we are just printing the quotient of numbers which gives the remainder as 0.

Let’s understand through an example : 

n = 10 
from 1 to 10
keep checking n % 1 == 0 print 1
              n % 2 == 0 print 2
              3, 4, 5, 6, 7, 8, 9 will not give remainder 0 
              exit loop;
              
The 1 and 2 which gives remainder as 0 it also mean that n is perfectly divisible by 1 and 2 so in second for loop keep printing the quotient on dividing by 1 and 2 which left remainder 0
from 10 to 1 
keep checking n % 1 == 0 print n/1 
              n % 2 == 0 print n/2   
              exit loop

C++




// A O(sqrt(n)) program that prints all divisors
// in sorted order
#include <iostream>
#include <math.h>
using namespace std;
 
// Function to print the divisors
void printDivisors(int n)
{
    int i;
    for (i = 1; i * i < n; i++) {
        if (n % i == 0)
            cout<<i<<" ";
    }
    if (i - (n / i) == 1) {
        i--;
    }
    for (; i >= 1; i--) {
        if (n % i == 0)
            cout<<n / i<<" ";
    }
}
 
// Driver code
int main()
{
    cout << "The divisors of 100 are: \n";
 
    printDivisors(100);
 
    return 0;
}
 
// This code is contributed by siteshbiswal


C




// A O(sqrt(n)) program that prints all divisors
// in sorted order
#include <stdio.h>
#include <math.h>
 
// function to print the divisors
void printDivisors(int n)
{ int i;
    for ( i = 1; i*i < n; i++) {
        if (n % i == 0)
            printf("%d ", i);
    }
   if(i-(n/i)==1)
    {
      i--;
    }
    for (; i >= 1; i--) {
        if (n % i == 0)
            printf("%d ", n / i);
    }
}
 
/* Driver program to test above function */
int main()
{
    printf("The divisors of 100 are: \n");
    printDivisors(100);
    return 0;
}


Java




// A O(sqrt(n)) program that prints all
// divisors in sorted order
import java.lang.Math;
 
class GFG{
     
// Function to print the divisors
public static void printDivisors(int n)
{ int i;
    for( i = 1; i * i < n; i++)
    {
        if (n % i == 0)
            System.out.print(i + " ");
    }
    if(i-(n/i)==1)
    {
      i--;
    }
    for(; i >= 1; i--)
    {
        if (n % i == 0)
            System.out.print(n / i + " ");
    }
}
 
// Driver code
public static void main(String[] args)
{
    System.out.println("The divisors of 100 are: ");
     
    printDivisors(100);
}
}
 
// This code is contributed by Prakash Veer Singh Tomar.


Python3




# A O(sqrt(n)) program that prints all divisors
# in sorted order
from math import *
 
# Function to print the divisors
def printDivisors (n):
 
    i = 1
    while (i * i < n):
        if (n % i == 0):
            print(i, end = " ")
 
        i += 1
 
    for i in range(int(sqrt(n)), 0, -1):
        if (n % i == 0):
            print(n // i, end = " ")
 
# Driver Code
print("The divisors of 100 are: ")
 
printDivisors(100)
 
# This code is contributed by himanshu77


C#




// A O(sqrt(n)) program that prints
// all divisors in sorted order
using System;
using System.Collections;
using System.Collections.Generic;
 
class GFG{
 
// Function to print the divisors
static void printDivisors(int n)
{
    for(int i = 1; i * i < n; i++)
    {
        if (n % i == 0)
            Console.Write(i + " ");
    }
    for(int i = (int)Math.Sqrt(n); i >= 1; i--)
    {
        if (n % i == 0)
            Console.Write(n / i + " ");
    }
  
// Driver code  
public static void Main(string []arg)
{
    Console.Write("The divisors of 100 are: \n");
     
    printDivisors(100);
}
}
 
// This code is contributed by rutvik_56


Javascript




<script>
 
// A O(sqrt(n)) program that prints all divisors
// in sorted order
 
// function to print the divisors
function printDivisors(n)
{
    for (var i = 1; i*i < n; i++) {
        if (n % i == 0)
            document.write(i + " ");
    }
    for (var i = Math.sqrt(n); i >= 1; i--) {
        if (n % i == 0)
            document.write(" " + n / i);
    }
}
 
// Driver program to test above function
 
    document.write("The divisors of 100 are: \n");
    printDivisors(100);
     
// This code is contributed by simranarora5sos
 
</script>


Output

The divisors of 100 are: 
1 2 4 5 10 20 25 50 100 

Time complexity : O(sqrt(n)) 
Auxiliary Space : O(1) 
Thanks to Mysterious Mind for suggesting the above solution.

The if condition between the two loops is used when corner factors in the loop’s condition have a difference of 1(for example- factors of 30 (5,6) here, 5 will be printed two times; to resolve that issue this step is required.

This article is contributed by Ashutosh Kumar. Please write comments if you find anything incorrect, or if you want to share more information about the topic discussed above.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments