Saturday, December 28, 2024
Google search engine
HomeData Modelling & AIFind all distinct subsets of a given set using BitMasking Approach

Find all distinct subsets of a given set using BitMasking Approach

Given an array of integers arr[], The task is to find all its subsets. The subset can not contain duplicate elements, so any repeated subset should be considered only once in the output.

Examples: 

Input:  S = {1, 2, 2}
Output:  {}, {1}, {2}, {1, 2}, {2, 2}, {1, 2, 2}
Explanation: The total subsets of given set are – {}, {1}, {2}, {2}, {1, 2}, {1, 2}, {2, 2}, {1, 2, 2}
Here {2} and {1, 2} are repeated twice so they are considered only once in the output

Input:  S = {1, 2}
Output:  {}, {1}, {2}, {1, 2}
Explanation: The total subsets of given set are – {}, {1}, {2}, {1, 2}

Recommended Practice

BRUTE METHOD:

Intuition:

  1. We do this problem by using the backtracking approach.
  2. we declare a arraylist to store all the subsets generated.
  3. We  sort the array in order to skip repeated subsets as it should be unique.
  4. then we pick a particular element or not pick from the array and we generate the subsets.
  5. atlast we add it in the final list and return it.

Implementation:

C++




// C++ program to find all subsets of given set. Any
// repeated subset is considered only once in the output
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
 
void findSubsets(int ind, vector<int>& nums, vector<int>& ds, vector<vector<int>>& ansList) {
    ansList.push_back(ds);
    for (int i = ind; i < nums.size(); i++) {
        if (i != ind && nums[i] == nums[i - 1])
            continue;
 
        ds.push_back(nums[i]);
        findSubsets(i + 1, nums, ds, ansList);
        ds.pop_back();
    }
}
 
vector<vector<int>> AllSubsets(int arr[], int n) {
    vector<int> nums(arr, arr + n);
    vector<int> ds;
    sort(nums.begin(), nums.end());
    vector<vector<int>> ansList;
    findSubsets(0, nums, ds, ansList);
    return ansList;
}
 
int main() {
    int set[] = { 10, 12, 12 };
    vector<vector<int>> subsets = AllSubsets(set, 3);
 
    for (auto subset : subsets) {
        cout << "[";
        for (int i = 0; i < subset.size(); i++) {
            cout << subset[i];
            if (i < subset.size() - 1) {
                cout << ", ";
            }
        }
        cout << "], ";
    }
 
    return 0;
}


Java




// Java program to find all subsets of given set. Any
// repeated subset is considered only once in the output
import java.io.*;
import java.util.*;
 
class GFG {
    public static void
    findSubsets(int ind, int[] nums, ArrayList<Integer> ds,
                ArrayList<ArrayList<Integer> > ansList)
    {
        ansList.add(new ArrayList<>(ds));
        for (int i = ind; i < nums.length; i++) {
            if (i != ind && nums[i] == nums[i - 1])
                continue;
 
            ds.add(nums[i]);
            findSubsets(i + 1, nums, ds, ansList);
            ds.remove(ds.size() - 1);
        }
    }
    public static ArrayList<ArrayList<Integer> >
    AllSubsets(int arr[], int n)
    {
        // your code here
        Arrays.sort(arr);
        ArrayList<ArrayList<Integer> > ansList
            = new ArrayList<>();
        findSubsets(0, arr, new ArrayList<>(), ansList);
 
        return ansList;
    }
    public static void main(String[] args)
    {
        int[] set = { 10, 12, 12 };
        System.out.println(AllSubsets(set, 3));
    }
}
// This code is contributed by Raunak Singh


Python3




# Python program to find all subsets of given set. Any
# repeated subset is considered only once in the output
def find_subsets(ind, nums, ds, ans_list):
    ans_list.append(list(ds))
    for i in range(ind, len(nums)):
        if i != ind and nums[i] == nums[i - 1]:
            continue
 
        ds.append(nums[i])
        find_subsets(i + 1, nums, ds, ans_list)
        ds.pop()
 
def all_subsets(arr):
    nums = sorted(arr)
    ans_list = []
    find_subsets(0, nums, [], ans_list)
    return ans_list
 
if __name__ == "__main__":
    set = [10, 12, 12]
    subsets = all_subsets(set)
 
    for subset in subsets:
        print(subset, end=", ")


C#




// C# program to find all subsets of given set. Any
// repeated subset is considered only once in the output
using System;
using System.Collections.Generic;
 
public class GFG
{
    static void FindSubsets(int ind, int[] nums, List<int> ds, List<List<int>> ansList)
    {
        ansList.Add(new List<int>(ds));
        for (int i = ind; i < nums.Length; i++)
        {
            if (i != ind && nums[i] == nums[i - 1])
                continue;
 
            ds.Add(nums[i]);
            FindSubsets(i + 1, nums, ds, ansList);
            ds.RemoveAt(ds.Count - 1);
        }
    }
 
    static List<List<int>> AllSubsets(int[] arr)
    {
        Array.Sort(arr);
        List<List<int>> ansList = new List<List<int>>();
        FindSubsets(0, arr, new List<int>(), ansList);
        return ansList;
    }
 
    public static void Main()
    {
        int[] set = { 10, 12, 12 };
        List<List<int>> subsets = AllSubsets(set);
 
        foreach (List<int> subset in subsets)
        {
            Console.Write("[");
            for (int i = 0; i < subset.Count; i++)
            {
                Console.Write(subset[i]);
                if (i < subset.Count - 1)
                {
                    Console.Write(", ");
                }
            }
            Console.Write("], ");
        }
    }
}


Javascript




// Javascript program to find all subsets of given set. Any
// repeated subset is considered only once in the output
function findSubsets(ind, nums, ds, ansList) {
    ansList.push([...ds]);
    for (let i = ind; i < nums.length; i++) {
        if (i !== ind && nums[i] === nums[i - 1]) {
            continue;
        }
 
        ds.push(nums[i]);
        findSubsets(i + 1, nums, ds, ansList);
        ds.pop();
    }
}
 
function allSubsets(arr) {
    const nums = arr.slice().sort((a, b) => a - b);
    const ansList = [];
    findSubsets(0, nums, [], ansList);
    return ansList;
}
 
const set = [10, 12, 12];
const subsets = allSubsets(set);
 
for (const subset of subsets) {
    console.log(subset);
}


Output

[[], [10], [10, 12], [10, 12, 12], [12], [12, 12]]

Time Complexity:  O(2^N * N) since we are generating every subset

Auxiliary Space: O(2^N) 

Prerequisite: Power Set

Approach: Below is the idea to solve the problem:

The idea is to use a bit-mask pattern to generate all the combinations as discussed in post. To avoid printing duplicate subsets construct a string out of given subset such that subsets having similar elements will result in same string. Maintain a list of such unique strings and finally decode all such string to print its individual elements.

Illustration :

S = {1, 2, 2}

The binary digits from 0 to 7 are

0 –> 000    –> number formed with no setbits                              –> { }
1 –> 001    –> number formed with setbit at position 0                –> { 1 }
2 –> 010    –> number formed with setbit at position 1                –> { 2 }
3 –> 011    –> number formed with setbit at position 0  and 1     –> { 1 , 2 }
4 –> 100    –> number formed with setbit at position 2                –>  { 2 }
5 –> 101    –> number formed with setbit at position 0 and 2      –> { 1 , 2}
6 –> 110    –> number formed with setbit at position 1 and 2      –> { 2 , 2}
7 –> 111    –> number formed with setbit at position 0 , 1 and 2  –> {1 , 2 , 2}

After removing duplicates final result will be { }, { 1 }, { 2 }, { 1 , 2 }, { 2 , 2 }, { 1 , 2 , 2}

Note: This method will only work on sorted arrays. 

Follow the below steps to Implement the idea:

  • Initialize a variable pow_set_size as 2 raise to size of array and a vector of vector ans to store all subsets.
  • Iterate over all bitmasks from 0 to pow_set_size  – 1.
    • For every bitmask include the elements of array of indices where bits are set into a subset vector.
    • If this subset doesn’t already exist then push the subset in the ans vector.
  • Return ans.

Below is the implementation of the above approach:  

C++14




// C++ program to find all subsets of given set. Any
// repeated subset is considered only once in the output
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find all subsets of given set. Any repeated
// subset is considered only once in the output
vector<vector<int> > findPowerSet(vector<int>& nums)
{
    // Size of array to set bit
    int bits = nums.size();
 
    // Total number of subsets = pow(2,
    // sizeof(arr))
    unsigned int pow_set_size = pow(2, bits);
 
    // Sort to avoid adding permutation of
    // the substring
    sort(nums.begin(), nums.end());
    vector<vector<int> > ans;
 
    // To store subset as a list to
    // avoid adding exact duplicates
    vector<string> list;
 
    // Counter 000..0 to 111..1
    for (int counter = 0; counter < pow_set_size;
         counter++) {
        vector<int> subset;
        string temp = "";
 
        // Check for the current bit in the counter
        for (int j = 0; j < bits; j++) {
            if (counter & (1 << j)) {
                subset.push_back(nums[j]);
 
                // Add special character to separate
                // integers
                temp += to_string(nums[j]) + '$';
            }
        }
 
        if (find(list.begin(), list.end(), temp)
            == list.end()) {
            ans.push_back(subset);
            list.push_back(temp);
        }
    }
 
    return ans;
}
 
// Driver code
int main()
{
    vector<int> arr{ 10, 12, 12 };
 
    vector<vector<int> > power_set = findPowerSet(arr);
 
    for (int i = 0; i < power_set.size(); i++) {
        for (int j = 0; j < power_set[i].size(); j++)
            cout << power_set[i][j] << " ";
        cout << endl;
    }
 
    return 0;
}
// this code is contributed by prophet1999


Java




// Java program to find all subsets of given set. Any
// repeated subset is considered only once in the output
import java.io.*;
import java.util.*;
 
public class GFG {
 
    // Function to find all subsets of given set. Any
    // repeated subset is considered only once in the output
    static void printPowerSet(int[] set, int set_size)
    {
 
        ArrayList<String> subset = new ArrayList<String>();
 
        /*set_size of power set of a set
        with set_size n is (2**n -1)*/
        long pow_set_size = (long)Math.pow(2, set_size);
        int counter, j;
 
        /*Run from counter 000..0 to
        111..1*/
        for (counter = 0; counter < pow_set_size;
             counter++) {
            String temp = "";
            for (j = 0; j < set_size; j++) {
                /* Check if jth bit in the
                counter is set If set then
                print jth element from set */
                if ((counter & (1 << j)) > 0)
                    temp
                        += (Integer.toString(set[j]) + '$');
            }
 
            if (!subset.contains(temp)
                && temp.length() > 0) {
                subset.add(temp);
            }
        }
 
        for (String s : subset) {
            s = s.replace('$', ' ');
            System.out.println(s);
        }
    }
 
    // Driver program to test printPowerSet
    public static void main(String[] args)
    {
        int[] set = { 10, 12, 12 };
        printPowerSet(set, 3);
    }
}
 
// This code is contributed by Aditya Patil.


Python3




# Python3 program to find all subsets of
# given set. Any repeated subset is
# considered only once in the output
 
 
def printPowerSet(arr, n):
 
    # Function to find all subsets of given set.
    # Any repeated subset is considered only
    # once in the output
    _list = []
 
    # Run counter i from 000..0 to 111..1
    for i in range(2**n):
        subset = ""
 
        # consider each element in the set
        for j in range(n):
 
            # Check if jth bit in the i is set.
            # If the bit is set, we consider
            # jth element from set
            if (i & (1 << j)) != 0:
                subset += str(arr[j]) + "|"
 
        # if subset is encountered for the first time
        # If we use set<string>, we can directly insert
        if subset not in _list and len(subset) > 0:
            _list.append(subset)
 
    # consider every subset
    for subset in _list:
 
        # split the subset and print its elements
        arr = subset.split('|')
        for string in arr:
            print(string, end=" ")
        print()
 
 
# Driver Code
if __name__ == '__main__':
    arr = [10, 12, 12]
    n = len(arr)
    printPowerSet(arr, n)
 
# This code is contributed by vibhu4agarwal


C#




// C# program to find all subsets of given set. Any
// repeated subset is considered only once in the output
using System;
using System.Collections.Generic;
 
public class GFG {
 
  // Function to find all subsets of given set. Any
  // repeated subset is considered only once in the output
  static void printPowerSet(int[] set, int set_size)
  {
 
    List<string> subset = new List<string>();
 
    /*set_size of power set of a set
        with set_size n is (2**n -1)*/
    long pow_set_size = (long)Math.Pow(2, set_size);
    int counter, j;
 
    /*Run from counter 000..0 to
        111..1*/
    for (counter = 0; counter < pow_set_size;
         counter++) {
      string temp = "";
      for (j = 0; j < set_size; j++) {
        /* Check if jth bit in the
                counter is set If set then
                print jth element from set */
        if ((counter & (1 << j)) > 0)
          temp
          += (Convert.ToString(set[j]) + ' ');
      }
 
      if (!subset.Contains(temp) && temp.Length > 0) {
        subset.Add(temp);
      }
    }
 
    foreach(string s in subset)
    {
      s.Replace('$', ' ');
      Console.WriteLine(s);
    }
  }
 
  // Driver program to test printPowerSet
  public static void Main(string[] args)
  {
    int[] set = { 10, 12, 12 };
    printPowerSet(set, 3);
  }
}
 
// This code is contributed by ishankhandelwals.


Javascript




<script>
        // JavaScript program to find all subsets of given set. Any
        // repeated subset is considered only once in the output
 
        // Function to find all subsets of given set. Any repeated
        // subset is considered only once in the output
        const findPowerSet = (nums) => {
            let bits = nums.length;     // size of array to set bit
            let pow_set_size = Math.pow(2, bits);     // total number of subsets = pow(2, sizeof(arr))
            nums.sort();     // sort to avoid adding permutation of the substring
            let ans = [];
            let list = [];     // to store subset as a list to avoid adding exact duplicates
 
 
            // counter 000..0 to 111..1
            for (let counter = 0; counter < pow_set_size; counter++) {
                let subset = [];
                let temp = "";
 
                // check for the current bit in the counter
                for (let j = 0; j < bits; j++) {
                    if (counter & (1 << j)) {
                        subset.push(nums[j]);
                        // add special character to separate integers
                        temp += nums[j].toString() + '$';
                    }
                }
 
                if (list.indexOf(temp) == -1) {
                    ans.push(subset);
                    list.push(temp);
                }
            }
 
            return ans;
        }
 
        // Driver code
 
        let arr = [10, 12, 12];
 
        let power_set = findPowerSet(arr);
 
        for (let i = 0; i < power_set.length; i++) {
            for (let j = 0; j < power_set[i].length; j++)
                document.write(`${power_set[i][j]} `);
            document.write("<br/>");
        }
 
    // This code is contributed by rakeshsahni
 
    </script>


Output

10 
12 
10 12 
12 12 
10 12 12 

Time Complexity: O(N*2N)
Auxiliary Space: O(N*N)

Analysis:

If M           is the total number of steps in the code, then the loop to generate all binary combinations runs till, and then the inner loop run till log(i).
Hence, M = \sum_{i=1}^{2^n}{log[i]}       , Raising to the power of two on both sides 
 2^M = 2^{\sum_{i=1}^{2^N}{log[i]}} = \prod_{i=1}^{2^N}{2^{log[i]}} = \prod_{i=1}^{2^N}{i} = (2^N)!        
Using log on both sides and applying Sterling’s approximation,
M = log(2^{N}!) \approx N2^N - 2^N = N2^N
Hence the time complexity is O(N*2^N)

Find all distinct subsets of a given set using BitMasking Approach using Backtracking

Refer to the article https://www.geeksforgeeks.org/backtracking-to-find-all-subsets/ to solve the problem using the backtracking approach.

This article is contributed by Aditya Goel. If you like neveropen and would like to contribute, you can also write an article using contribute.neveropen.org or mail your article to contribute@neveropen.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments