Sunday, January 12, 2025
Google search engine
HomeData Modelling & AIFind a triplet (X, Y, Z) with given sum as N and...

Find a triplet (X, Y, Z) with given sum as N and GCD of two numbers is the third number

Given a positive integer N, the task is to find a triple of three distinct positive integers (X, Y, Z) such that X + Y + Z = N and X = GCD (Y, Z).

Example:

Input: N = 12
Output:1 2 9
Explanation: The triplet (1, 2, 9) is set of distinct integers such that 1 + 2 + 9 = 12 and 1 = GCD(2, 9).

Input: N = 5675
Output:1 3 5671

Naive Approach: The basic idea is to iterate to find all possible triplets of (X, Y, Z) with sum N and for each triplet, check if GCD(Y, Z) = X.

Code-

C++




// C++ program of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find a triplet (X, Y, Z)
// of distinct integers with their sum
// as N and GCD(Y, Z) = X
void printTriplet(int N)
{
    for(int i=1;i<N;i++){
        for(int j=i+1;j<N;j++){
            for(int k=j+1;k<N;k++){
                if(i+j+k==N && __gcd(j,k)==i){
                    cout<<i<<" "<<j<<" "<<k<<endl;
                    return;
                }
            }
        }
    }
}
 
// Driver Code
int main()
{
    int N = 5875;
    printTriplet(N);
 
    return 0;
}


Java




import java.util.*;
 
class GFG
{
 
  // Function to find a triplet (X, Y, Z)
  // of distinct integers with their sum
  // as N and GCD(Y, Z) = X
  static void printTriplet(int N)
  {
    for (int i = 1; i < N; i++) {
      for (int j = i + 1; j < N; j++) {
        for (int k = j + 1; k < N; k++) {
          if (i + j + k == N && gcd(j, k) == i) {
            System.out.println(i + " " + j + " "
                               + k);
            return;
          }
        }
      }
    }
  }
 
  // Function to calculate GCD of two numbers
  static int gcd(int a, int b)
  {
    if (b == 0) {
      return a;
    }
    return gcd(b, a % b);
  }
 
  // Driver Code
  public static void main(String[] args)
  {
    int N = 5875;
    printTriplet(N);
  }
}


Python3




import math
 
# Function to find a triplet (X, Y, Z)
# of distinct integers with their sum
# as N and GCD(Y, Z) = X
 
 
def printTriplet(N):
    for i in range(1, N):
        for j in range(i+1, N):
            for k in range(j+1, N):
                if i+j+k == N and math.gcd(j, k) == i:
                    print(i, j, k)
                    return
 
 
# Driver Code
if __name__ == "__main__":
    N = 5875
    printTriplet(N)


C#




using System;
 
class MainClass {
    // Function to find a triplet (X, Y, Z)
    // of distinct integers with their sum
    // as N and GCD(Y, Z) = X
    static void PrintTriplet(int N)
    {
        for (int i = 1; i < N; i++) {
            for (int j = i + 1; j < N; j++) {
                for (int k = j + 1; k < N; k++) {
                    if (i + j + k == N && gcd(j, k) == i) {
                        Console.WriteLine(i + " " + j + " "
                                          + k);
                        return;
                    }
                }
            }
        }
    }
 
    static int gcd(int a, int b)
    {
        if (a == 0)
            return b;
        return gcd(b % a, a);
    }
 
    // Driver Code
    public static void Main(string[] args)
    {
        int N = 5875;
        PrintTriplet(N);
    }
}


Javascript




// Function to find a triplet (X, Y, Z)
// of distinct integers with their sum
// as N and GCD(Y, Z) = X
 
function printTriplet(N)
{
  for (let i = 1; i < N; i++)
  {
    for (let j = i + 1; j < N; j++)
    {
      for (let k = j + 1; k < N; k++)
      {
        if (i + j + k == N && gcd(j, k) == i)
        {
          console.log(i, j, k);
          return;
        }
      }
    }
  }
}
 
// Function to find the greatest common divisor (GCD) of two numbers
function gcd(a, b) {
  if (b == 0) return a;
  return gcd(b, a % b);
}
 
// Driver Code
let N = 5875;
printTriplet(N);


Output

1 5 5869

Time Complexity: O(N3*logN),logN for finding GCD, and N3 for three “for” loops
Auxiliary space: O(1)

Efficient Approach: The above approach can be further optimized using the observation that for any given N, there are the following three cases:

  • Case 1: If N is even then, a valid triplet is (1, N/2, N/2 -1).
  • Case 2: If N is odd and (N/2) is even then, a valid triplet is (1, N/2 + 1, N/2 -1).
  • Case 3: If N is odd and (N/2) is also odd then, a valid triplet is (1, N/2 – 2, N/2 + 2).

Hence, for any given N, identify the case and print its respective triplet.
Below is the implementation of the approach:

C++




// C++ program of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find a triplet (X, Y, Z)
// of distinct integers with their sum
// as N and GCD(Y, Z) = X
int printTriplet(int N)
{
    // Case 1 where N is even
    if (N % 2 == 0) {
        cout << 1 << " " << (N / 2)
<< " " << (N / 2) - 1;
    }
    else {
 
        // Case 2 where N is Odd
        // and N/2 is even
        if ((N / 2) % 2 == 0) {
            cout << 1 << " "
 << (N / 2) - 1 << " "
                 << (N / 2) + 1;
        }
 
        // Case 3 where N is Odd
        // and N/2 is also odd
        else {
            cout << 1 << " "
 << (N / 2) - 2 << " "
                 << (N / 2) + 2;
        }
    }
}
 
// Driver Code
int main()
{
    int N = 5875;
    printTriplet(N);
 
    return 0;
}


Java




// Java program of the above approach
import java.util.*;
class GFG
{
 
  // Function to find a triplet (X, Y, Z)
  // of distinct integers with their sum
  // as N and GCD(Y, Z) = X
  static void printTriplet(int N)
  {
 
    // Case 1 where N is even
    if (N % 2 == 0) {
      System.out.print(1 + " " + (N / 2) +
                       " " + ((N / 2) - 1));
    } else {
 
      // Case 2 where N is Odd
      // and N/2 is even
      if ((N / 2) % 2 == 0) {
        System.out.print(1 + " " + ((N / 2) - 1) +
                         " " + ((N / 2) + 1));
      }
 
      // Case 3 where N is Odd
      // and N/2 is also odd
      else {
        System.out.print(1 + " " + ((N / 2) - 2) +
                         " " + ((N / 2) + 2));
      }
    }
  }
 
  // Driver Code
  public static void main(String[] args) {
    int N = 5875;
    printTriplet(N);
 
  }
}
 
// This code is contributed by 29AjayKumar


Python3




# python3 program of the above approach
 
# Function to find a triplet (X, Y, Z)
# of distinct integers with their sum
# as N and GCD(Y, Z) = X
def printTriplet(N):
 
    # Case 1 where N is even
    if (N % 2 == 0):
        print(f"{1} {(N / 2)} {(N / 2) - 1}")
 
    else:
 
        # Case 2 where N is Odd
        # and N/2 is even
        if ((N // 2) % 2 == 0):
            print(f"{1} {(N // 2) - 1} {(N // 2) + 1}")
 
        # Case 3 where N is Odd
        # and N/2 is also odd
        else:
            print(f"{1} {(N // 2) - 2} {(N // 2) + 2}")
 
# Driver Code
if __name__ == "__main__":
 
    N = 5875
    printTriplet(N)
 
# This code is contributed by rakeshsahni


C#




// C# program of the above approach
using System;
 
class GFG{
 
// Function to find a triplet (X, Y, Z)
// of distinct integers with their sum
// as N and GCD(Y, Z) = X
static void printTriplet(int N)
{
     
    // Case 1 where N is even
    if (N % 2 == 0)
    {
        Console.Write(1 + " " + (N / 2) + " " +
                               ((N / 2) - 1));
    }
    else
    {
         
        // Case 2 where N is Odd
        // and N/2 is even
        if ((N / 2) % 2 == 0)
        {
            Console.Write(1 + " " + ((N / 2) - 1) + " " +
                                    ((N / 2) + 1));
        }
 
        // Case 3 where N is Odd
        // and N/2 is also odd
        else
        {
            Console.Write(1 + " " + ((N / 2) - 2) + " " +
                                    ((N / 2) + 2));
        }
    }
}
 
// Driver Code
public static void Main()
{
    int N = 5875;
     
    printTriplet(N);
}
}
 
// This code is contributed by ukasp


Javascript




<script>
       // JavaScript code for the above approach
 
       // Function to find a triplet (X, Y, Z)
       // of distinct integers with their sum
       // as N and GCD(Y, Z) = X
       function printTriplet(N)
       {
        
           // Case 1 where N is even
           if (N % 2 == 0) {
               document.write(1 + " " + Math.floor(N / 2)
                   + " " + (Math.floor(N / 2) - 1));
           }
           else {
 
               // Case 2 where N is Odd
               // and N/2 is even
               if ((N / 2) % 2 == 0) {
                   document.write(1 + " "
                       + (Math.floor(N / 2) - 1) + " "
                       + (Math.floor(N / 2) + 1));
               }
 
               // Case 3 where N is Odd
               // and N/2 is also odd
               else {
                   document.write(1 + " "
                       + (Math.floor(N / 2) - 2) + " "
                       + (Math.floor(N / 2) + 2));
               }
           }
       }
 
       // Driver Code
       let N = 5875;
       printTriplet(N);
 
 // This code is contributed by Potta Lokesh
   </script>


Output

1 2935 2939

Time Complexity: O(1)
Auxiliary space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments