Given an array of integers, you have to find three numbers such that the sum of two elements equals the third element.
Examples:
Input : {5, 32, 1, 7, 10, 50, 19, 21, 2}
Output : 21, 2, 19Input : {5, 32, 1, 7, 10, 50, 19, 21, 0}
Output : no such triplet exist
Question source: Arcesium Interview Experience | Set 7 (On campus for Internship)
Simple approach: Run three loops and check if there exists a triplet such that sum of two elements equals the third element.
Code-
C++
// CPP program to find three numbers // such that sum of two makes the // third element in array #include <bits/stdc++.h> using namespace std; // Utility function for finding // triplet in array void findTriplet( int arr[], int n) { for ( int i = 0; i < n; i++) { for ( int j = i + 1; j < n; j++) { for ( int k = j + 1; k < n; k++) { if ((arr[i]+arr[j]==arr[k]) || (arr[i]+arr[k]==arr[j]) || (arr[j]+arr[k]==arr[i])){ // printing out the first triplet cout << "Numbers are: " << arr[i] << " " << arr[j] << " " << arr[k]; return ; } } } } // No such triplet is found in array cout << "No such triplet exists" ; } // driver program int main() { int arr[] = { 5, 32, 1, 7, 10, 50, 19, 21, 2 }; int n = sizeof (arr) / sizeof (arr[0]); findTriplet(arr, n); return 0; } |
Java
import java.util.*; public class Main { // Utility function for finding triplet in array public static void findTriplet( int [] arr, int n) { for ( int i = 0 ; i < n; i++) { for ( int j = i + 1 ; j < n; j++) { for ( int k = j + 1 ; k < n; k++) { if ((arr[i]+arr[j]==arr[k]) || (arr[i]+arr[k]==arr[j]) || (arr[j]+arr[k]==arr[i])) { // printing out the first triplet System.out.println( "Numbers are: " + arr[i] + " " + arr[j] + " " + arr[k]); return ; } } } } // No such triplet is found in array System.out.println( "No such triplet exists" ); } // Driver program public static void main(String[] args) { int [] arr = { 5 , 32 , 1 , 7 , 10 , 50 , 19 , 21 , 2 }; int n = arr.length; findTriplet(arr, n); } } |
Python3
# Python3 program to find three numbers # such that sum of two makes the # third element in array # Utility function for finding # triplet in array def findTriplet(arr, n): for i in range (n): for j in range (i + 1 , n): for k in range (j + 1 , n): if ((arr[i] + arr[j] = = arr[k]) or (arr[i] + arr[k] = = arr[j]) or (arr[j] + arr[k] = = arr[i])): # printing out the first triplet print ( "Numbers are:" , arr[i], arr[j], arr[k]) return # No such triplet is found in array print ( "No such triplet exists" ) # driver program if __name__ = = '__main__' : arr = [ 5 , 32 , 1 , 7 , 10 , 50 , 19 , 21 , 2 ] n = len (arr) findTriplet(arr, n) |
C#
// C# program to find three numbers // such that sum of two makes the // third element in array using System; public class MainClass { // Utility function for finding // triplet in array public static void FindTriplet( int [] arr, int n) { for ( int i = 0; i < n; i++) { for ( int j = i + 1; j < n; j++) { for ( int k = j + 1; k < n; k++) { if ((arr[i] + arr[j] == arr[k]) || (arr[i] + arr[k] == arr[j]) || (arr[j] + arr[k] == arr[i])) { // printing out the first triplet Console.WriteLine( "Numbers are: " + arr[i] + " " + arr[j] + " " + arr[k]); return ; } } } } // No such triplet is found in array Console.WriteLine( "No such triplet exists" ); } public static void Main() { int [] arr = { 5, 32, 1, 7, 10, 50, 19, 21, 2 }; int n = arr.Length; FindTriplet(arr, n); } } |
Javascript
// Utility function for finding triplet in array function findTriplet(arr) { const n = arr.length; for (let i = 0; i < n; i++) { for (let j = i + 1; j < n; j++) { for (let k = j + 1; k < n; k++) { if ( arr[i] + arr[j] === arr[k] || arr[i] + arr[k] === arr[j] || arr[j] + arr[k] === arr[i] ) { // Printing out the first triplet console.log(`Numbers are: ${arr[i]}, ${arr[j]}, ${arr[k]}`); return ; } } } } // No such triplet is found in array console.log( "No such triplet exists" ); } // Driver program const arr = [5, 32, 1, 7, 10, 50, 19, 21, 2]; findTriplet(arr); |
Numbers are: 5 7 2
Time Complexity: O(N^3)
Auxiliary Space: O(1)
Efficient approach: The idea is similar to Find a triplet that sum to a given value.
- Sort the given array first.
- Start fixing the greatest element of three from the back and traverse the array to find the other two numbers which sum up to the third element.
- Take two pointers j(from front) and k(initially i-1) to find the smallest of the two number and from i-1 to find the largest of the two remaining numbers
- If the addition of both the numbers is still less than A[i], then we need to increase the value of the summation of two numbers, thereby increasing the j pointer, so as to increase the value of A[j] + A[k].
- If the addition of both the numbers is more than A[i], then we need to decrease the value of the summation of two numbers, thereby decrease the k pointer so as to decrease the overall value of A[j] + A[k].
Below image is a dry run of the above approach:
Below is the implementation of the above approach:
C++
// CPP program to find three numbers // such that sum of two makes the // third element in array #include <bits/stdc++.h> using namespace std; // Utility function for finding // triplet in array void findTriplet( int arr[], int n) { // sort the array sort(arr, arr + n); // for every element in arr // check if a pair exist(in array) whose // sum is equal to arr element for ( int i = n - 1; i >= 0; i--) { int j = 0; int k = i - 1; // Iterate forward and backward to find // the other two elements while (j < k) { // If the two elements sum is // equal to the third element if (arr[i] == arr[j] + arr[k]) { // pair found cout << "numbers are " << arr[i] << " " << arr[j] << " " << arr[k] << endl; return ; } // If the element is greater than // sum of both the elements, then try // adding a smaller number to reach the // equality else if (arr[i] > arr[j] + arr[k]) j += 1; // If the element is smaller, then // try with a smaller number // to reach equality, so decrease K else k -= 1; } } // No such triplet is found in array cout << "No such triplet exists" ; } // driver program int main() { int arr[] = { 5, 32, 1, 7, 10, 50, 19, 21, 2 }; int n = sizeof (arr) / sizeof (arr[0]); findTriplet(arr, n); return 0; } |
Java
// Java program to find three numbers // such that sum of two makes the // third element in array import java.util.Arrays; public class GFG { // utility function for finding // triplet in array static void findTriplet( int arr[], int n) { // sort the array Arrays.sort(arr); // for every element in arr // check if a pair exist(in array) whose // sum is equal to arr element for ( int i = n - 1 ; i >= 0 ; i--) { int j = 0 ; int k = i - 1 ; while (j < k) { if (arr[i] == arr[j] + arr[k]) { // pair found System.out.println( "numbers are " + arr[i] + " " + arr[j] + " " + arr[k]); return ; } else if (arr[i] > arr[j] + arr[k]) j += 1 ; else k -= 1 ; } } // no such triplet is found in array System.out.println( "No such triplet exists" ); } // driver program public static void main(String args[]) { int arr[] = { 5 , 32 , 1 , 7 , 10 , 50 , 19 , 21 , 2 }; int n = arr.length; findTriplet(arr, n); } } // This code is contributed by Sumit Ghosh |
Python
# Python program to find three numbers # such that sum of two makes the # third element in array # utility function for finding # triplet in array def findTriplet(arr, n): # sort the array arr.sort() # for every element in arr # check if a pair exist(in array) whose # sum is equal to arr element i = n - 1 while (i > = 0 ): j = 0 k = i - 1 while (j < k): if (arr[i] = = arr[j] + arr[k]): # pair found print "numbers are " , arr[i], arr[j], arr[k] return elif (arr[i] > arr[j] + arr[k]): j + = 1 else : k - = 1 i - = 1 # no such triplet is found in array print "No such triplet exists" # driver program arr = [ 5 , 32 , 1 , 7 , 10 , 50 , 19 , 21 , 2 ] n = len (arr) findTriplet(arr, n) # This code is contributed by Sachin Bisht |
C#
// C# program to find three numbers // such that sum of two makes the // third element in array using System; public class GFG { // utility function for finding // triplet in array static void findTriplet( int [] arr, int n) { // sort the array Array.Sort(arr); // for every element in arr // check if a pair exist(in // array) whose sum is equal // to arr element for ( int i = n - 1; i >= 0; i--) { int j = 0; int k = i - 1; while (j < k) { if (arr[i] == arr[j] + arr[k]) { // pair found Console.WriteLine( "numbers are " + arr[i] + " " + arr[j] + " " + arr[k]); return ; } else if (arr[i] > arr[j] + arr[k]) j += 1; else k -= 1; } } // no such triplet is found in array Console.WriteLine( "No such triplet exists" ); } // driver program public static void Main() { int [] arr = { 5, 32, 1, 7, 10, 50, 19, 21, 2 }; int n = arr.Length; findTriplet(arr, n); } } // This code is contributed by vt_m. |
PHP
<?php // PHP program to find three // numbers such that sum of // two makes the third // element in array // utility function for // finding triplet in array function findTriplet( $arr , $n ) { // sort the array sort( $arr ); // for every element in // arr check if a pair // exist(in array) whose // sum is equal to arr element for ( $i = $n - 1; $i >= 0; $i --) { $j = 0; $k = $i - 1; while ( $j < $k ) { if ( $arr [ $i ] == $arr [ $j ] + $arr [ $k ]) { // pair found echo "numbers are " , $arr [ $i ], " " , $arr [ $j ], " " , $arr [ $k ]; return ; } else if ( $arr [ $i ] > $arr [ $j ] + $arr [ $k ]) $j += 1; else $k -= 1; } } // no such triplet // is found in array echo "No such triplet exists" ; } // Driver Code $arr = array (5, 32, 1, 7, 10, 50, 19, 21, 2 ); $n = count ( $arr ); findTriplet( $arr , $n ); // This code is contributed by anuj_67. ?> |
Javascript
<script> // Javascript program to find three numbers // such that sum of two makes the // third element in array // Utility function for finding // triplet in array function findTriplet(arr, n) { // sort the array arr.sort((a,b) => a-b); // for every element in arr // check if a pair exist(in array) whose // sum is equal to arr element for (let i = n - 1; i >= 0; i--) { let j = 0; let k = i - 1; // Iterate forward and backward to find // the other two elements while (j < k) { // If the two elements sum is // equal to the third element if (arr[i] == arr[j] + arr[k]) { // pair found document.write( "numbers are " + arr[i] + " " + arr[j] + " " + arr[k] + "<br>" ); return ; } // If the element is greater than // sum of both the elements, then try // adding a smaller number to reach the // equality else if (arr[i] > arr[j] + arr[k]) j += 1; // If the element is smaller, then // try with a smaller number // to reach equality, so decrease K else k -= 1; } } // No such triplet is found in array document.write( "No such triplet exists" ); } // driver program let arr = [ 5, 32, 1, 7, 10, 50, 19, 21, 2 ]; let n = arr.length; findTriplet(arr, n); // This code is contributed by Mayank Tyagi </script> |
numbers are 21 2 19
Time Complexity: O(N^2)
Auxiliary Space: O(1)
Another Approach: The idea is similar to previous approach:
- Sort the given array.
- Start a nested loop, fixing the first element i(from 0 to n-1) and moving the other one j (from i+1 to n-1).
- Take the sum of both the elements and search it in the remaining array using Binary Search.
Implementation:
C++
// CPP program to find three numbers // such that sum of two makes the // third element in array #include <bits/stdc++.h> #include <iostream> using namespace std; // function to perform binary search bool search( int sum, int start, int end, int arr[]) { while (start <= end) { int mid = (start + end) / 2; if (arr[mid] == sum) { return true ; } else if (arr[mid] > sum) { end = mid - 1; } else { start = mid + 1; } } return false ; } // function to find the triplets void findTriplet( int arr[], int n) { // sorting the array sort(arr, arr + n); // initialising nested loops for ( int i = 0; i < n; i++) { for ( int j = i + 1; j < n; j++) { // finding the sum of the numbers if (search((arr[i] + arr[j]), j, n - 1, arr)) { // printing out the first triplet cout << "Numbers are: " << arr[i] << " " << arr[j] << " " << (arr[i] + arr[j]); return ; } } } // if no such triplets are found cout << "No such numbers exist" << endl; } int main() { int arr[] = { 5, 32, 1, 7, 10, 50, 19, 21, 2 }; int n = sizeof (arr) / sizeof (arr[0]); findTriplet(arr, n); return 0; } // This code is contributed by Sarthak Delori |
Java
// Java program to find three numbers // such that sum of two makes the // third element in array import java.util.*; class GFG{ // Function to perform binary search static boolean search( int sum, int start, int end, int arr[]) { while (start <= end) { int mid = (start + end) / 2 ; if (arr[mid] == sum) { return true ; } else if (arr[mid] > sum) { end = mid - 1 ; } else { start = mid + 1 ; } } return false ; } // Function to find the triplets static void findTriplet( int arr[], int n) { // Sorting the array Arrays.sort(arr); // Initialising nested loops for ( int i = 0 ; i < n; i++) { for ( int j = i + 1 ; j < n; j++) { // Finding the sum of the numbers if (search((arr[i] + arr[j]), j, n - 1 , arr)) { // Printing out the first triplet System.out.print( "Numbers are: " + arr[i] + " " + arr[j] + " " + (arr[i] + arr[j])); return ; } } } // If no such triplets are found System.out.print( "No such numbers exist" ); } // Driver code public static void main(String args[]) { int arr[] = { 5 , 32 , 1 , 7 , 10 , 50 , 19 , 21 , 2 }; int n = arr.length; findTriplet(arr, n); } } // This code is contributed by target_2 |
Python3
# Python program to find three numbers # such that sum of two makes the # third element in array from functools import cmp_to_key def mycmp(a, b): return a - b def search( sum , start, end, arr): while (start < = end): mid = (start + end) / / 2 if (arr[mid] = = sum ): return True elif (arr[mid] > sum ): end = mid - 1 else : start = mid + 1 return False # Utility function for finding # triplet in array def findTriplet(arr, n): # sort the array arr.sort(key = cmp_to_key(mycmp)) # initialising nested loops for i in range (n): for j in range (i + 1 ,n): if (search((arr[i] + arr[j]), j, n - 1 , arr)): print (f "numbers are {arr[i]} {arr[j]} {( arr[i] + arr[j] )}" ) return # No such triplet is found in array print ( "No such triplet exists" ) # driver program arr = [ 5 , 32 , 1 , 7 , 10 , 50 , 19 , 21 , 2 ] n = len (arr) findTriplet(arr, n) # This code is contributed by shinjanpatra |
C#
// C# program to find three numbers // such that sum of two makes the // third element in array using System; public class GFG { // function to perform binary search static bool search( int sum, int start, int end, int [] arr) { while (start <= end) { int mid = (start + end) / 2; if (arr[mid] == sum) { return true ; } else if (arr[mid] > sum) { end = mid - 1; } else { start = mid + 1; } } return false ; } // utility function for finding // triplet in array static void findTriplet( int [] arr, int n) { // sort the array Array.Sort(arr); // for every element in arr // check if a pair exist(in // array) whose sum is equal // to arr element for ( int i = 0; i < n; i++) { for ( int j=i+1;j<n;j++) { // finding the sum of the numbers if (search((arr[i] + arr[j]), j, n - 1, arr)) { // pair found Console.WriteLine( "Numbers are " + arr[i] + " " + arr[j] + " " + (arr[i]+arr[j])); return ; } } } // no such triplet is found in array Console.WriteLine( "No such triplet exists" ); } // driver program public static void Main() { int [] arr = { 5, 32, 1, 7, 10, 50, 19, 21, 2 }; int n = arr.Length; findTriplet(arr, n); } } // This code is contributed by Aarti_Rathi |
Javascript
<script> // Javascript program to find three numbers // such that sum of two makes the // third element in array bool search(sum, start, end, arr) { while (start <= end) { let mid = (start + end) / 2; if (arr[mid] == sum) { return true ; } else if (arr[mid] > sum) { end = mid - 1; } else { start = mid + 1; } } return false ; } // Utility function for finding // triplet in array function findTriplet(arr, n) { // sort the array arr.sort((a,b) => a-b); // initialising nested loops for (let i = 0; i < n; i++) { for (let j = i + 1; j < n; j++) { if (search((arr[i] + arr[j]), j, n - 1, arr)) { document.write( "numbers are " + arr[i] + " " + arr[j] + " " + ( arr[i] + arr[j] ) + "<br>" ); } } } // No such triplet is found in array document.write( "No such triplet exists" ); } // driver program let arr = [ 5, 32, 1, 7, 10, 50, 19, 21, 2 ]; let n = arr.length; findTriplet(arr, n); // This code is contributed by Sarthak Delori </script> |
Numbers are: 2 5 7
Time Complexity: O(N^2*log N)
Auxiliary Space: O(1)
This article is contributed by Mandeep Singh. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!