Friday, January 10, 2025
Google search engine
HomeData Modelling & AIFind a node such that all paths from that node to leaf...

Find a node such that all paths from that node to leaf nodes are of the same color

Given a 2D array edges[][] of type { X, Y } representing that there is an edge between the node X and Y in a tree, and an array color[] representing the value of the color of the ith node, the task is to find a root node of the tree such that all the child nodes of the root node on the same path have the same value of the color. If multiple solutions exist, then print any one of them. Otherwise, print -1.

Examples:

Input: 
 

Output:
Explanation: 
 

All the child nodes on the path from the root node(= 2) to the leaf node(= 1) have the same value of the color(= 1). 
All the child nodes on the path from the root node(= 2) to the leaf node(= 4) have the same value of the color(= 1). 
Therefore, the required output is 2.

Input: 
 

Output:
Explanation: 
 

All the child nodes on the path from the root node(=2) to the leaf node(=9) have the same value of the color(= 4). 
All the child nodes on the path from the root node(=2) to the leaf node(=1) have the same value of the color(= 1). 
All the child nodes on the path from the root node(=2) to the leaf node(=5) have the same value of the color(= 2). 
All the child nodes on the path from the root node(=2) to the leaf node(=6) have the same value of the color(= 3).

Approach: The idea is to iterate over all possible nodes of the tree. For every ith node, check if it satisfies the condition of the root node or not using DFS. If found to be true, then print the node. Otherwise, print -1. Follow the steps below to solve the problem:

  • Initialize a variable, say root, to store the root node of the tree that satisfies the condition.
  • Iterate over all possible nodes of the tree. Consider every ith node of the tree as root node and check if all the child nodes on the path from root node to the leaf node have the same color or not using DFS. If found to be true, then print the node.
  • Otherwise, print -1.

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to perform dfs on the tree
bool dfs(int node, int c, vector<int> adj[],
         int color[], int visited[])
{
 
    // Mark visited node as true
    visited[node] = true;
 
    // If color does not match with
    // previous node on the same path
    if (color[node] != c) {
        return false;
    }
 
    // Check if current subtree
    // has all same colored nodes
    int f = 1;
 
    // Traverse all unvisited neighbors
    // node of the tree
    for (int j = 0; j < adj[node].size(); j++) {
 
        // Stores neighbors node
        // of the tree
        int neighbor = adj[node][j];
 
        // If current node is not
        // already visited
        if (!visited[neighbor]) {
 
            if (dfs(neighbor, c, adj,
                    color, visited)
                == false) {
 
                // Update f
                f = 0;
                break;
            }
        }
    }
    return f;
}
 
// Function to find the root node of
// the tree such that all child nodes
// on the same path have the same color
void findNode(int edges[][2],
              int color[], int n)
{
 
    // Store the adjacency list
    vector<int> adj[n + 1];
 
    // Traverse all edges and form
    // the adjacency list
    for (int i = 0; i < n - 1; i++) {
        int a = edges[i][0];
        int b = edges[i][1];
        adj[a].push_back(b);
        adj[b].push_back(a);
    }
 
    // Store the root node such that all
    // child nodes on the same path have
    // the same color
    int ans = -1;
 
    // Iterate over all possible
    // nodes of the tree
    for (int i = 1; i <= n; i++) {
 
        // Check if node i satisfies
        // the condition of root node
        int f = 1;
 
        // Check if a node has been
        // visited or not
        int visited[n + 1] = { false };
 
        // Mark visited[i] as true
        visited[i] = true;
 
        // Traverse all the neighbors
        // of node i
        for (int j = 0; j < adj[i].size(); j++) {
 
            // Stores the current neighbor
            int neighbor = adj[i][j];
 
            // Perform DFS for current neighbor
            if (dfs(neighbor, color[neighbor],
                    adj, color, visited)
                == false) {
 
                // Update f
                f = 0;
                break;
            }
        }
 
        if (f == 1) {
            ans = i;
            break;
        }
    }
 
    // Print the answer
    cout << ans;
}
 
// Driver Code
int main()
{
 
    int n = 9;
    int color[n + 1] = { -1, 1, 1, 2, 2,
                         2, 3, 3, 4, 4 };
 
    int edges[][2] = { { 1, 2 }, { 2, 3 },
                       { 3, 4 }, { 4, 5 },
                       { 2, 7 }, { 7, 6 },
                       { 2, 8 }, { 8, 9 } };
 
    findNode(edges, color, n);
 
    return 0;
}


Java




// Java program to implement
// the above approach
import java.util.*;
class GFG
{
 
// Function to perform dfs on the tree
static boolean dfs(int node, int c, Vector<Integer> adj[],
         int color[], boolean visited[])
{
 
    // Mark visited node as true
    visited[node] = true;
 
    // If color does not match with
    // previous node on the same path
    if (color[node] != c)
    {
        return false;
    }
 
    // Check if current subtree
    // has all same colored nodes
    boolean f = true;
 
    // Traverse all unvisited neighbors
    // node of the tree
    for (int j = 0; j < adj[node].size(); j++)
    {
 
        // Stores neighbors node
        // of the tree
        int neighbor = adj[node].get(j);
 
        // If current node is not
        // already visited
        if (!visited[neighbor])
        {
 
            if (dfs(neighbor, c, adj,
                    color, visited) == false)
            {
 
                // Update f
                f = false;
                break;
            }
        }
    }
    return f;
}
 
// Function to find the root node of
// the tree such that all child nodes
// on the same path have the same color
static void findNode(int edges[][],
              int color[], int n)
{
 
    // Store the adjacency list
    Vector<Integer> []adj = new Vector[n + 1];
    for(int i = 0; i < n + 1; i++)
        adj[i] = new Vector<Integer>();
 
    // Traverse all edges and form
    // the adjacency list
    for (int i = 0; i < n - 1; i++)
    {
        int a = edges[i][0];
        int b = edges[i][1];
        adj[a].add(b);
        adj[b].add(a);
    }
 
    // Store the root node such that all
    // child nodes on the same path have
    // the same color
    int ans = -1;
 
    // Iterate over all possible
    // nodes of the tree
    for (int i = 1; i <= n; i++)
    {
 
        // Check if node i satisfies
        // the condition of root node
        int f = 1;
 
        // Check if a node has been
        // visited or not
        boolean []visited = new boolean[n + 1];
 
        // Mark visited[i] as true
        visited[i] = true;
 
        // Traverse all the neighbors
        // of node i
        for (int j = 0; j < adj[i].size(); j++)
        {
 
            // Stores the current neighbor
            int neighbor = adj[i].get(j);
 
            // Perform DFS for current neighbor
            if (dfs(neighbor, color[neighbor],
                    adj, color, visited) == false)
            {
 
                // Update f
                f = 0;
                break;
            }
        }
        if (f == 1)
        {
            ans = i;
            break;
        }
    }
 
    // Print the answer
    System.out.print(ans);
}
 
// Driver Code
public static void main(String[] args)
{
 
    int n = 9;
    int color[] = { -1, 1, 1, 2, 2,
                         2, 3, 3, 4, 4 };
    int edges[][] = { { 1, 2 }, { 2, 3 },
                       { 3, 4 }, { 4, 5 },
                       { 2, 7 }, { 7, 6 },
                       { 2, 8 }, { 8, 9 } };
    findNode(edges, color, n);
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python program to implement
# the above approach
from typing import List
 
# Function to perform dfs on the tree
def dfs(node: int, c: int, adj: List[List[int]],
        color: List[int],
        visited: List[int]) -> bool:
 
    # Mark visited node as true
    visited[node] = True
 
    # If color does not match with
    # previous node on the same path
    if (color[node] != c):
        return False
 
    # Check if current subtree
    # has all same colored nodes
    f = 1
 
    # Traverse all unvisited neighbors
    # node of the tree
    for j in range(len(adj[node])):
 
        # Stores neighbors node
        # of the tree
        neighbor = adj[node][j]
 
        # If current node is not
        # already visited
        if (not visited[neighbor]):
            if not dfs(neighbor, c, adj, color, visited):
 
                # Update f
                f = 0
                break
    return f
 
# Function to find the root node of
# the tree such that all child nodes
# on the same path have the same color
def findNode(edges: List[List[int]], color: List[int], n: int) -> None:
 
    # Store the adjacency list
    adj = [[] for _ in range(n + 1)]
 
    # Traverse all edges and form
    # the adjacency list
    for i in range(n - 1):
        a = edges[i][0]
        b = edges[i][1]
        adj[a].append(b)
        adj[b].append(a)
 
    # Store the root node such that all
    # child nodes on the same path have
    # the same color
    ans = -1
 
    # Iterate over all possible
    # nodes of the tree
    for i in range(1, n + 1):
 
        # Check if node i satisfies
        # the condition of root node
        f = 1
 
        # Check if a node has been
        # visited or not
        visited = [False for _ in range(n + 1)]
 
        # Mark visited[i] as true
        visited[i] = True
 
        # Traverse all the neighbors
        # of node i
        for j in range(len(adj[i])):
 
            # Stores the current neighbor
            neighbor = adj[i][j]
 
            # Perform DFS for current neighbor
            if not dfs(neighbor, color[neighbor],
                       adj, color, visited):
 
                # Update f
                f = 0
                break
 
        if (f == 1):
            ans = i
            break
 
    # Print the answer
    print(ans)
 
# Driver Code
if __name__ == "__main__":
 
    n = 9
    color = [-1, 1, 1, 2, 2, 2, 3, 3, 4, 4]
    edges = [[1, 2], [2, 3], [3, 4], [4, 5], [2, 7], [7, 6], [2, 8], [8, 9]]
    findNode(edges, color, n)
 
# This code is contributed by sanjeev2552


C#




// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
class GFG
{
 
// Function to perform dfs on the tree
static bool dfs(int node, int c, List<int> []adj,
         int []color, bool []visited)
{
 
    // Mark visited node as true
    visited[node] = true;
 
    // If color does not match with
    // previous node on the same path
    if (color[node] != c)
    {
        return false;
    }
 
    // Check if current subtree
    // has all same colored nodes
    bool f = true;
 
    // Traverse all unvisited neighbors
    // node of the tree
    for (int j = 0; j < adj[node].Count; j++)
    {
 
        // Stores neighbors node
        // of the tree
        int neighbor = adj[node][j];
 
        // If current node is not
        // already visited
        if (!visited[neighbor])
        {
 
            if (dfs(neighbor, c, adj,
                    color, visited) == false)
            {
 
                // Update f
                f = false;
                break;
            }
        }
    }
    return f;
}
 
// Function to find the root node of
// the tree such that all child nodes
// on the same path have the same color
static void findNode(int [,]edges,
              int []color, int n)
{
 
    // Store the adjacency list
    List<int> []adj = new List<int>[n + 1];
    for(int i = 0; i < n + 1; i++)
        adj[i] = new List<int>();
 
    // Traverse all edges and form
    // the adjacency list
    for (int i = 0; i < n - 1; i++)
    {
        int a = edges[i, 0];
        int b = edges[i, 1];
        adj[a].Add(b);
        adj[b].Add(a);
    }
 
    // Store the root node such that all
    // child nodes on the same path have
    // the same color
    int ans = -1;
 
    // Iterate over all possible
    // nodes of the tree
    for (int i = 1; i <= n; i++)
    {
 
        // Check if node i satisfies
        // the condition of root node
        int f = 1;
 
        // Check if a node has been
        // visited or not
        bool []visited = new bool[n + 1];
 
        // Mark visited[i] as true
        visited[i] = true;
 
        // Traverse all the neighbors
        // of node i
        for (int j = 0; j < adj[i].Count; j++)
        {
 
            // Stores the current neighbor
            int neighbor = adj[i][j];
 
            // Perform DFS for current neighbor
            if (dfs(neighbor, color[neighbor],
                    adj, color, visited) == false)
            {
 
                // Update f
                f = 0;
                break;
            }
        }
        if (f == 1)
        {
            ans = i;
            break;
        }
    }
 
    // Print the answer
    Console.Write(ans);
}
 
// Driver Code
public static void Main(String[] args)
{
    int n = 9;
    int []color = { -1, 1, 1, 2, 2,
                         2, 3, 3, 4, 4 };
    int [,]edges = { { 1, 2 }, { 2, 3 },
                       { 3, 4 }, { 4, 5 },
                       { 2, 7 }, { 7, 6 },
                       { 2, 8 }, { 8, 9 } };
    findNode(edges, color, n);
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
  // JavaScript program for the above approach
   
  // Function to perform dfs on the tree
  function dfs(node, c, adj, color, visited)
  {
    
      // Mark visited node as true
      visited[node] = true;
    
      // If color does not match with
      // previous node on the same path
      if (color[node] != c)
      {
          return false;
      }
    
      // Check if current subtree
      // has all same colored nodes
      let f = true;
    
      // Traverse all unvisited neighbors
      // node of the tree
      for (let j = 0; j < adj[node].length; j++)
      {
    
          // Stores neighbors node
          // of the tree
          let neighbor = adj[node][j];
    
          // If current node is not
          // already visited
          if (!visited[neighbor])
          {
    
              if (dfs(neighbor, c, adj, color, visited) == false)
              {
    
                  // Update f
                  f = false;
                  break;
              }
          }
      }
      return f;
  }
    
  // Function to find the root node of
  // the tree such that all child nodes
  // on the same path have the same color
  function findNode(edges, color, n)
  {
    
      // Store the adjacency list
      let adj = new Array(n + 1);
      for(let i = 0; i < n + 1; i++)
      {
          adj[i] = [];
      }
    
      // Traverse all edges and form
      // the adjacency list
      for (let i = 0; i < n - 1; i++)
      {
          let a = edges[i][0];
          let b = edges[i][1];
          adj[a].push(b);
          adj[b].push(a);
      }
    
      // Store the root node such that all
      // child nodes on the same path have
      // the same color
      let ans = -1;
    
      // Iterate over all possible
      // nodes of the tree
      for (let i = 1; i <= n; i++)
      {
    
          // Check if node i satisfies
          // the condition of root node
          let f = 1;
    
          // Check if a node has been
          // visited or not
          let visited = new Array(n + 1);
          visited.fill(false);
    
          // Mark visited[i] as true
          visited[i] = true;
    
          // Traverse all the neighbors
          // of node i
          for (let j = 0; j < adj[i].length; j++)
          {
    
              // Stores the current neighbor
              let neighbor = adj[i][j];
    
              // Perform DFS for current neighbor
              if (dfs(neighbor, color[neighbor],
                      adj, color, visited) == false)
              {
    
                  // Update f
                  f = 0;
                  break;
              }
          }
          if (f == 1)
          {
              ans = i;
              break;
          }
      }
    
      // Print the answer
      document.write(ans);
  }
   
  let n = 9;
  let color = [ -1, 1, 1, 2, 2, 2, 3, 3, 4, 4 ];
  let edges = [ [ 1, 2 ], [ 2, 3 ],
                     [ 3, 4 ], [ 4, 5 ],
                     [ 2, 7 ], [ 7, 6 ],
                     [ 2, 8 ], [ 8, 9 ] ];
  findNode(edges, color, n);
     
</script>


Output: 

2

 

Time complexity: O(N2)
Auxiliary space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments