Sunday, October 5, 2025
HomeData Modelling & AIFind (1^n + 2^n + 3^n + 4^n) mod 5 |...

Find (1^n + 2^n + 3^n + 4^n) mod 5 | Set 2

Given a very large number N. The task is to find (1n + 2n + 3n + 4n) mod 5.
Examples: 
 

Input: N = 4 
Output:
(1 + 16 + 81 + 256) % 5 = 354 % 5 = 4
Input: N = 7823462937826332873467731 
Output:
 

 

Approach: (1n + 2n + 3n + 4n) mod 5 = (1n mod ?(5) + 2n mod ?(5) + 3n mod ?(5) + 4n mod ?(5)) mod 5. 
This formula is correct because 5 is a prime number and it is coprime with 1, 2, 3, 4. 
Know about ?(n) and modulo of large number 
?(5) = 4, hence (1n + 2n + 3n + 4n) mod 5 = (1n mod 4 + 2n mod 4 + 3n mod 4 + 4n mod 4) mod 5
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return A mod B
int A_mod_B(string N, int a)
{
    // length of the string
    int len = N.size();
 
    // to store required answer
    int ans = 0;
    for (int i = 0; i < len; i++)
        ans = (ans * 10 + (int)N[i] - '0') % a;
 
    return ans % a;
}
 
// Function to return (1^n + 2^n + 3^n + 4^n) % 5
int findMod(string N)
{
    // ?(5) = 4
    int mod = A_mod_B(N, 4);
 
    int ans = (1 + pow(2, mod) + pow(3, mod)
               + pow(4, mod));
 
    return (ans % 5);
}
 
// Driver code
int main()
{
    string N = "4";
    cout << findMod(N);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
     
// Function to return A mod B
static int A_mod_B(String N, int a)
{
    // length of the string
    int len = N.length();
 
    // to store required answer
    int ans = 0;
    for (int i = 0; i < len; i++)
        ans = (ans * 10 + (int)N.charAt(i) - '0') % a;
 
    return ans % a;
}
 
// Function to return (1^n + 2^n + 3^n + 4^n) % 5
static int findMod(String N)
{
    // ?(5) = 4
    int mod = A_mod_B(N, 4);
 
    int ans = (1 + (int)Math.pow(2, mod) +
                (int)Math.pow(3, mod) +
                (int)Math.pow(4, mod));
 
    return (ans % 5);
}
 
// Driver code
public static void main(String args[])
{
    String N = "4";
    System.out.println(findMod(N));
}
}
 
// This code is contributed by Arnab Kundu


Python3




# Python3 implementation of the approach
 
# Function to return A mod B
def A_mod_B(N, a):
     
    # length of the string
    Len = len(N)
 
    # to store required answer
    ans = 0
    for i in range(Len):
        ans = (ans * 10 + int(N[i])) % a
 
    return ans % a
 
# Function to return (1^n + 2^n + 3^n + 4^n) % 5
def findMod(N):
 
    # ?(5) = 4
    mod = A_mod_B(N, 4)
 
    ans = (1 + pow(2, mod) +
               pow(3, mod) + pow(4, mod))
 
    return ans % 5
 
# Driver code
N = "4"
print(findMod(N))
 
# This code is contributed by mohit kumar


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
// Function to return A mod B
static int A_mod_B(string N, int a)
{
    // length of the string
    int len = N.Length;
 
    // to store required answer
    int ans = 0;
    for (int i = 0; i < len; i++)
        ans = (ans * 10 + (int)N[i] - '0') % a;
 
    return ans % a;
}
 
// Function to return (1^n + 2^n + 3^n + 4^n) % 5
static int findMod(string N)
{
    // ?(5) = 4
    int mod = A_mod_B(N, 4);
 
    int ans = (1 + (int)Math.Pow(2, mod) +
                (int)Math.Pow(3, mod) +
                (int)Math.Pow(4, mod));
 
    return (ans % 5);
}
 
// Driver code
public static void Main()
{
    string N = "4";
    Console.WriteLine(findMod(N));
}
}
 
// This code is contributed by Code_Mech.


PHP




<?php
// PHP implementation of the approach
 
// Function to return A mod B
function A_mod_B($N, $a)
{
    // length of the string
    $len = strlen($N);
 
    // to store required answer
    $ans = 0;
    for ($i = 0; $i < $len; $i++)
        $ans = ($ans * 10 +
               (int)$N[$i] - '0') % $a;
 
    return $ans % $a;
}
 
// Function to return
// (1^n + 2^n + 3^n + 4^n) % 5
function findMod($N)
{
    // ?(5) = 4
    $mod = A_mod_B($N, 4);
 
    $ans = (1 + pow(2, $mod) +
                pow(3, $mod) + pow(4, $mod));
 
    return ($ans % 5);
}
 
// Driver code
$N = "4";
echo findMod($N);
 
// This code is contributed
// by Akanksha Rai
?>


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return A mod B
function A_mod_B(N, a)
{
    // length of the string
    var len = N.length;
 
    // to store required answer
    var ans = 0;
    for (var i = 0; i < len; i++)
        ans = (ans * 10 + parseInt(N.charAt(i) - '0')) % a;
 
    return ans % a;
}
 
// Function to return (1^n + 2^n + 3^n + 4^n) % 5
function findMod(N)
{
    // ?(5) = 4
    var mod = A_mod_B(N, 4);
 
    var ans = (1 + parseInt(Math.pow(2, mod) +
                Math.pow(3, mod) +
                Math.pow(4, mod)));
 
    return (ans % 5);
}
 
// Driver Code
var N = "4";
     
// Function call
document.write(findMod(N));
 
// This code is contributed by Kirti
 
</script>


Output: 

4

 

Time Complexity: O(|N|), where |N| is the length of the string.
Auxiliary Space: O(1), since no extra space has been taken.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32337 POSTS0 COMMENTS
Milvus
86 POSTS0 COMMENTS
Nango Kala
6706 POSTS0 COMMENTS
Nicole Veronica
11871 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11936 POSTS0 COMMENTS
Shaida Kate Naidoo
6823 POSTS0 COMMENTS
Ted Musemwa
7089 POSTS0 COMMENTS
Thapelo Manthata
6779 POSTS0 COMMENTS
Umr Jansen
6779 POSTS0 COMMENTS