Given the upper limit, print factorials of all Fibonacci Numbers smaller than the limit.
Examples :
Input : limit = 20 Output : 1 1 1 2 6 120 40320 6227020800 Explanation : Fibonacci series in this range is 0, 1, 1, 2, 3, 5, 8, 13. Factorials of these numbers are output. Input : 50 Output : 1 1 1 2 6 120 40320 6227020800 51090942171709440000 295232799039604140847618609643520000000
We know simple factorial computations cause overflow very soon. Therefore, we use factorials of large numbers.
One simple solution is to generate all Fibonacci numbers one by one and compute factorial of every generated number using method discussed in factorials of large numbers
An efficient solution is based on the fact that Fibonacci numbers are increasing in order. So we use the previously generated factorial to compute next factorial.
C++
// CPP program to find factorial of each element // of Fibonacci series #include <iostream> using namespace std; // Maximum number of digits in output #define MAX 500 // Finds and print factorial of n using // factorial of prev (stored in prevFact[ // 0...size-1] void factorial( int prevFact[], int &size, int prev, int n); // Prints factorials of all fibonacci // numbers smaller than given limit. void printfibFactorials( int limit) { if (limit < 1) return ; // Initialize first three Fibonacci // numbers and print factorials of // first two numbers. int a = 1, b = 1, c = 2; cout << a << " " << b << " " ; // prevFact[] stores factorial of // previous fibonacci number int prevFact[MAX]; prevFact[0] = 1; // Size is current size of prevFact[] int size = 1; // Standard Fibonacci number loop while (c < limit) { factorial(prevFact, size, b, c); a = b; b = c; c = a + b; } } // Please refer below article for details of // below two functions. // Function used to find factorial int multiply( int x, int prevFact[], int size) { int carry = 0; for ( int i = 0; i < size; i++) { int prod = prevFact[i] * x + carry; prevFact[i] = prod % 10; carry = prod / 10; } // Put carry in res and increase // result size while (carry) { prevFact[size] = carry % 10; carry = carry / 10; size++; } return size; } // Finds factorial of n using factorial // "prev" stored in prevFact[]. size is // size of prevFact[] void factorial( int prevFact[], int &size, int prev, int n) { for ( int x = prev+1; x <= n; x++) size = multiply(x, prevFact, size); for ( int i = size - 1; i >= 0; i--) cout << prevFact[i]; cout << " " ; } // Driver function int main() { int limit = 20; printfibFactorials(limit); return 0; } |
Java
// Java program to find // factorial of each element // of Fibonacci series import java.io.*; class GFG { // Maximum number of // digits in output static int MAX = 500 ; static int size = 1 ; // Finds and print factorial // of n using factorial of // prev (stored in prevFact[ // 0...size-1] // Finds factorial of n // using factorial "prev" // stored in prevFact[]. size // is size of prevFact[] static void factorial( int []prevFact, int prev, int n) { for ( int x = prev + 1 ; x <= n; x++) size = multiply(x, prevFact, size); for ( int i = size - 1 ; i >= 0 ; i--) System.out.print(prevFact[i]); System.out.print( " " ); } // Prints factorials of all // fibonacci numbers smaller // than given limit. static void printfibFactorials( int limit) { if (limit < 1 ) return ; // Initialize first three // Fibonacci numbers and // print factorials of // first two numbers. int a = 1 , b = 1 , c = 2 ; System.out.print(a + " " + b + " " ); // prevFact[] stores factorial // of previous fibonacci number int []prevFact = new int [MAX]; prevFact[ 0 ] = 1 ; // Standard Fibonacci // number loop while (c < limit) { factorial(prevFact, b, c); a = b; b = c; c = a + b; } } // Please refer below // article for details of // below two functions. // Function used to // find factorial static int multiply( int x, int []prevFact, int size) { int carry = 0 ; for ( int i = 0 ; i < size; i++) { int prod = prevFact[i] * x + carry; prevFact[i] = prod % 10 ; carry = prod / 10 ; } // Put carry in // res and increase // result size while (carry != 0 ) { prevFact[size] = carry % 10 ; carry = carry / 10 ; size++; } return size; } // Driver Code public static void main(String args[]) { int limit = 20 ; printfibFactorials(limit); } } // This code is contributed by // Manish Shaw(manishshaw1) |
Python3
# Python3 program to find # factorial of each element # of Fibonacci series # Maximum number of # digits in output MAX = 500 size = 1 # Finds and print factorial # of n using factorial of # prev (stored in prevFact[ # 0...size-1] # Finds factorial of n # using factorial "prev" # stored in prevFact[]. size # is size of prevFact[] def factorial(prevFact, prev,n) : global size for x in range ((prev + 1 ), n + 1 ) : size = multiply(x, prevFact, size) for i in range ((size - 1 ), - 1 , - 1 ) : print (prevFact[i], end = "") print (end = " " ) # Prints factorials of all # fibonacci numbers smaller # than given limit. def printfibFactorials(limit) : if (limit < 1 ) : return # Initialize first three # Fibonacci numbers and # print factorials of # first two numbers. a = 1 b = 1 c = 2 print (a,b , end = " " ) # prevFact[] stores factorial # of previous fibonacci number prevFact = [ 0 ] * MAX prevFact[ 0 ] = 1 # Standard Fibonacci # number loop while (c < limit) : factorial(prevFact, b, c) a = b b = c c = a + b # Please refer below # article for details of # below two functions. # Function used to # find factorial def multiply(x,prevFact,size) : carry = 0 for i in range ( 0 , size) : prod = prevFact[i] * x + carry prevFact[i] = prod % 10 carry = prod / / 10 # Put carry in # res and increase # result size while (carry ! = 0 ) : prevFact[size] = carry % 10 carry = carry / / 10 size = size + 1 return size # Driver Code limit = 20 printfibFactorials(limit) # This code is contributed by Nikita Tiwari. |
C#
// C# program to find // factorial of each element // of Fibonacci series using System; class GFG { // Maximum number of // digits in output static int MAX = 500; // Finds and print factorial // of n using factorial of // prev (stored in prevFact[ // 0...size-1] // Finds factorial of n // using factorial "prev" // stored in prevFact[]. size // is size of prevFact[] static void factorial( int []prevFact, ref int size, int prev, int n) { for ( int x = prev + 1; x <= n; x++) size = multiply(x, prevFact, size); for ( int i = size - 1; i >= 0; i--) Console.Write(prevFact[i]); Console.Write( " " ); } // Prints factorials of all fibonacci // numbers smaller than given limit. static void printfibFactorials( int limit) { if (limit < 1) return ; // Initialize first three Fibonacci // numbers and print factorials of // first two numbers. int a = 1, b = 1, c = 2; Console.Write(a + " " + b + " " ); // prevFact[] stores factorial of // previous fibonacci number int []prevFact = new int [MAX]; prevFact[0] = 1; // Size is current size // of prevFact[] int size = 1; // Standard Fibonacci // number loop while (c < limit) { factorial(prevFact, ref size, b, c); a = b; b = c; c = a + b; } } // Please refer below // article for details of // below two functions. // Function used to find factorial static int multiply( int x, int []prevFact, int size) { int carry = 0; for ( int i = 0; i < size; i++) { int prod = prevFact[i] * x + carry; prevFact[i] = prod % 10; carry = prod / 10; } // Put carry in // res and increase // result size while (carry != 0) { prevFact[size] = carry % 10; carry = carry / 10; size++; } return size; } // Driver Code static void Main() { int limit = 20; printfibFactorials(limit); } } // This code is contributed by // Manish Shaw(manishshaw1) |
PHP
<?php // PHP program to find // factorial of each element // of Fibonacci series // Maximum number of // digits in output $MAX = 500; $size = 1; $prevFact = $prevFact = array_fill (0, $MAX , 0); // Finds and print factorial // of n using factorial of // prev (stored in prevFact[ // 0...size-1] // Finds factorial of n // using factorial "prev" // stored in prevFact[]. size // is size of prevFact[] function factorial( $prev , $n ) { global $size , $prevFact ; for ( $x = $prev + 1; $x <= $n ; $x ++) $size = multiply( $x , $size ); for ( $i = $size - 1; $i >= 0; $i --) echo $prevFact [ $i ]; echo " " ; } // Prints factorials of all // fibonacci numbers smaller // than given limit. function printfibFactorials( $limit ) { global $MAX , $prevFact ; if ( $limit < 1) return ; // Initialize first three // Fibonacci numbers and // print factorials of // first two numbers. $a = 1; $b = 1; $c = 2; echo $a . " " . $b . " " ; // prevFact[] stores factorial // of previous fibonacci number $prevFact [0] = 1; // Standard Fibonacci // number loop while ( $c < $limit ) { factorial( $b , $c ); $a = $b ; $b = $c ; $c = $a + $b ; } } // Function used to // find factorial function multiply( $x , $size ) { global $prevFact ; $carry = 0; for ( $i = 0; $i < $size ; $i ++) { $prod = $prevFact [ $i ] * $x + $carry ; $prevFact [ $i ] = $prod % 10; $carry = (int)( $prod / 10); } // Put carry in // res and increase // result size while ( $carry != 0) { $prevFact [ $size ] = $carry % 10; $carry = (int)( $carry / 10); $size ++; } return $size ; } // Driver Code $limit = 20; printfibFactorials( $limit ); // This code is contributed // by mits ?> |
Javascript
<script> // Javascript program to find // factorial of each element // of Fibonacci series // Maximum number of // digits in output var MAX = 500; var size = 1; // Finds and print factorial // of n using factorial of // prev (stored in prevFact[ // 0...size-1] // Finds factorial of n // using factorial "prev" // stored in prevFact. size // is size of prevFact function factorial(prevFact , prev , n) { for (x = prev + 1; x <= n; x++) size = multiply(x, prevFact, size); for (i = size - 1; i >= 0; i--) document.write(prevFact[i]); document.write( " " ); } // Prints factorials of all // fibonacci numbers smaller // than given limit. function printfibFactorials(limit) { if (limit < 1) return ; // Initialize first three // Fibonacci numbers and // print factorials of // first two numbers. var a = 1, b = 1, c = 2; document.write(a + " " + b + " " ); // prevFact stores factorial // of previous fibonacci number var prevFact = Array(MAX).fill(0); prevFact[0] = 1; // Standard Fibonacci // number loop while (c < limit) { factorial(prevFact, b, c); a = b; b = c; c = a + b; } } // Please refer below // article for details of // below two functions. // Function used to // find factorial function multiply(x, prevFact , size) { var carry = 0; for (i = 0; i < size; i++) { var prod = prevFact[i] * x + carry; prevFact[i] = prod % 10; carry = parseInt(prod / 10); } // Put carry in // res and increase // result size while (carry != 0) { prevFact[size] = carry % 10; carry = parseInt(carry / 10); size++; } return size; } // Driver Code var limit = 20; printfibFactorials(limit); // This code is contributed by todaysgaurav </script> |
Output :
1 1 2 6 120 40320 6227020800
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!