Friday, August 29, 2025
HomeLanguagesEvaluate a Hermite series at points x with multidimensional coefficient array in...

Evaluate a Hermite series at points x with multidimensional coefficient array in Python

In this article, we will discuss how to Evaluate a Hermite series at points x with a multidimensional coefficient array in Python and NumPy.

Example

Input: [[11 12][13 14]]
Output: [[37. 63.][40. 68.]]
Explanation: Hermite series at points x.

NumPy.polynomial.hermite.hermval method

To evaluate a Hermite series at points x with a multidimensional coefficient array, NumPy provides a function called hermite.hermval(). It takes two parameters x and c. whereas x is a tuple or list. It is considered a scalar. But, the parameter x should support multiplication and addition within itself and with the elements of c. If c is a 1-D array, then it will have the same shape as x. If c is multidimensional, then the shape of the result depends on the value of the tensor.

Syntax: polynomial.hermite.hermval(x,c, tensor)

Parameter:

  • x: array_like
  • c: Array of coefficient
  • tensor: boolean(optional).

Return: An Hermite series at points x.

Example 1:

In the first example, let us consider a 2D array and evaluate a Hermite series at point x. Import the necessary packages and pass the appropriate parameters as shown

Python3




import numpy as np
from numpy.polynomial import hermite
 
# co.eff array
c = np.array([[11, 12], [13, 14]])
 
print(f'The co.efficient array is {c}')
print(f'The shape of the array is {c.shape}')
print(f'The dimension of the array is {c.ndim}D')
print(f'The datatype of the array is {c.dtype}')
 
# evaluating multidimensional array of hermiteseries
res = hermite.hermval([1, 2], c)
 
# resultant array
print(f'Resultant series ---> {res}')


Output:

The co.efficient array is 
[[11 12]
 [13 14]]

The shape of the array is (2, 2)
The dimension of the array is 2D
The datatype of the array is int32

Resultant series ---> 
[[37. 63.]
 [40. 68.]]

Example 2:

In the second example, let us consider a 3D array and evaluate a Hermite series at point x. Import the necessary packages and pass the appropriate parameters as shown

Python3




import numpy as np
from numpy.polynomial import hermite
 
# co.eff array
c = np.arange(27).reshape(3, 3, 3)
 
print(f'The co.efficient array is {c}')
print(f'The shape of the array is {c.shape}')
print(f'The dimension of the array is {c.ndim}D')
print(f'The datatype of the array is {c.dtype}')
 
# evaluating multidimensional array of hermiteseries
res = hermite.hermval([17, 22], c)
 
# resultant array
print(f'Resultant series ---> {res}')


Output:

The co.efficient array is 
[[[ 0  1  2]
  [ 3  4  5]
  [ 6  7  8]]

 [[ 9 10 11]
  [12 13 14]
  [15 16 17]]

 [[18 19 20]
  [21 22 23]
  [24 25 26]]]

The shape of the array is (3, 3, 3)
The dimension of the array is 3D
The datatype of the array is int32

Resultant series ---> 
[[[21078. 35208.]
  [22267. 37187.]
  [23456. 39166.]]

 [[24645. 41145.]
  [25834. 43124.]
  [27023. 45103.]]

 [[28212. 47082.]
  [29401. 49061.]
  [30590. 51040.]]]
Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32246 POSTS0 COMMENTS
Milvus
80 POSTS0 COMMENTS
Nango Kala
6615 POSTS0 COMMENTS
Nicole Veronica
11787 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11835 POSTS0 COMMENTS
Shaida Kate Naidoo
6729 POSTS0 COMMENTS
Ted Musemwa
7011 POSTS0 COMMENTS
Thapelo Manthata
6684 POSTS0 COMMENTS
Umr Jansen
6699 POSTS0 COMMENTS