Thursday, September 4, 2025
HomeLanguagesEvaluate a Hermite_e series at points x with multidimensional coefficient array in...

Evaluate a Hermite_e series at points x with multidimensional coefficient array in Python

In this article, we will cover how to evaluate a Hermite_e series at points x with a multidimensional coefficient array in Python using NumPy.

Example

Input: [[0 1]
 [2 3]]
Output: [[ 6.  2.]
 [10.  4.]]
Explanation: Hermite_e series at input points.

hermite_e.hermeval method

To evaluate a Hermite series at points x with a multidimensional coefficient array, NumPy provides a function called hermite_e.hermeval(). It takes two parameters x and c. whereas x is a tuple or list and c is an array of coefficients. This method is available in the hermite_e module in python, it returns a Hermite_e series at the given input points, Below is the syntax of the hermeval method.

Syntax: hermite_e.hermeval(x, c, tensor)

Parameter:

  • x: a list or tuple
  • c: an array of coefficients ordered
  • tensor: boolean, optional

Return: Hermite_e series at points x

Example 1:

In this example, we are creating a coefficient of a multi-dimensional array with 5 elements and displaying the shape and dimensions of the array. After that, we are evaluating the Hermite_e series at points [4,1].

Python3




# import the numpy module
import numpy
  
# import hermite_se
from numpy.polynomial import hermite_e
  
# create array of coefficients with 5 elements each
coefficients_data = numpy.array([[1, 2, 3, 4, 5], 
                                 [3, 4, 2, 6, 7]])
  
# Display the coefficients
print(coefficients_data)
  
# get the shape
print(f"\nShape of an array: {coefficients_data.shape}")
  
# get the dimensions
print(f"Dimension: {coefficients_data.ndim}")
  
# Evaluate a Hermite_e series at points - [4,1]
print("\nHermite_e series", hermite_e.hermeval(
  [4, 1], coefficients_data))


Output:

[[1 2 3 4 5]
 [3 4 2 6 7]]

Shape of an array: (2, 5)
Dimension: 2

Hermite_e series [[13.  4.]
 [18.  6.]
 [11.  5.]
 [28. 10.]
 [33. 12.]]

Example 2:

In this example, we are creating a coefficient of a multi-dimensional array with NumPy of shape 2×2 and displaying the shape and dimensions of the array. After that, we are evaluating the Hermite_e series at points [3,1].

Python3




# import the numpy module
import numpy
  
# import hermite_se
from numpy.polynomial import hermite_e 
  
# create array of coefficients with 5 elements each
coefficients_data = np.arange(4).reshape(2,2)
  
# Display the coefficients
print(coefficients_data)
  
# get the shape
print(f"\nShape of an array: {coefficients_data.shape}")
  
# get the dimensions
print(f"Dimension: {coefficients_data.ndim}")
  
h = [3,1]
  
# Evaluate a Hermite_e series at points - [3,1]
print("\nHermite_e series", hermite_e.hermeval(
  h,coefficients_data))


Output:

[[0 1]
 [2 3]]

Shape of an array: (2, 2)
Dimension: 2

Hermite_e series [[ 6.  2.]
 [10.  4.]]
Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32263 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6627 POSTS0 COMMENTS
Nicole Veronica
11799 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11858 POSTS0 COMMENTS
Shaida Kate Naidoo
6749 POSTS0 COMMENTS
Ted Musemwa
7025 POSTS0 COMMENTS
Thapelo Manthata
6696 POSTS0 COMMENTS
Umr Jansen
6716 POSTS0 COMMENTS