Wednesday, July 3, 2024

Euclid Euler Theorem

According to Euclid Euler Theorem, a perfect number which is even, can be represented in the form (2^n - 1)*(2^n / 2) ))              where n is a prime number and 2^n - 1              is a Mersenne prime number. It is a product of a power of 2 with a Mersenne prime number. This theorem establishes a connection between a Mersenne prime and an even perfect number.
 

Some Examples (Perfect Numbers) which satisfy Euclid Euler Theorem are:

6, 28, 496, 8128, 33550336, 8589869056, 137438691328

Explanations:
1) 6 is an even perfect number.
So, it can be written in the form 
(22 - 1) * (2(2 - 1)) = 6
where n = 2 is a prime number and 2^n - 1 = 3 is a Mersenne prime number.

2) 28 is an even perfect number.
So, it can be written in the form 
(23 - 1) * (2(3 - 1)) = 28
where n = 3 is a prime number and 2^n - 1 = 7 is a Mersenne prime number.

3) 496 is an even perfect number.
So, it can be written in the form 
(25 - 1) * (2(5 - 1)) = 496
where n = 5 is a prime number and 2^n - 1 = 31 is a Mersenne prime number.

Approach(Brute Force):
Take each prime number and form a Mersenne prime with it. Mersenne prime =              where n is prime. Now form the number (2^n – 1)*(2^(n – 1)) and check if it is even and perfect. If the condition satisfies then it follows Euclid Euler Theorem. 
 

C++




// CPP code to verify Euclid Euler Theorem
#include <bits/stdc++.h>
using namespace std;
 
#define show(x) cout << #x << " = " << x << "\n";
 
bool isprime(long long n)
{
    // check whether a number is prime or not
    for (int i = 2; i * i <= n; i++)
        if (n % i == 0)
            return false;
    return true;
}
 
bool isperfect(long long n) // perfect numbers
{
    // check is n is perfect sum of divisors
    // except the number itself = number
    long long s = -n;
    for (long long i = 1; i * i <= n; i++) {
 
        // is i is a divisor of n
        if (n % i == 0) {
            long long factor1 = i, factor2 = n / i;
            s += factor1 + factor2;
 
            // here i*i == n
            if (factor1 == factor2)
                s -= i;
        }
    }
    return (n == s);
}
 
int main()
{
    // storing powers of 2 to access in O(1) time
    vector<long long> power2(61);
    for (int i = 0; i <= 60; i++)
        power2[i] = 1LL << i;
 
    // generation of first few numbers
    // satisfying Euclid Euler's theorem
 
    cout << "Generating first few numbers "
            "satisfying Euclid Euler's theorem\n";
    for (long long i = 2; i <= 25; i++) {
        long long no = (power2[i] - 1) * (power2[i - 1]);
        if (isperfect(no) and (no % 2 == 0))
            cout << "(2^" << i << " - 1) * (2^(" << i
                 << " - 1)) = " << no << "\n";
    }
    return 0;
}


Java




// Java code to verify Euclid Euler Theorem
class GFG
{
    static boolean isprime(long n)
    {
        // check whether a number is prime or not
        for (int i = 2; i * i <= n; i++)
        {
            if (n % i == 0)
            {
                return false;
            }
        }
        return false;
    }
 
    static boolean isperfect(long n) // perfect numbers
    {
        // check is n is perfect sum of divisors
        // except the number itself = number
        long s = -n;
        for (long i = 1; i * i <= n; i++)
        {
 
            // is i is a divisor of n
            if (n % i == 0)
            {
                long factor1 = i, factor2 = n / i;
                s += factor1 + factor2;
 
                // here i*i == n
                if (factor1 == factor2)
                {
                    s -= i;
                }
            }
        }
        return (n == s);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        // storing powers of 2 to access in O(1) time
        long power2[] = new long[61];
        for (int i = 0; i <= 60; i++)
        {
            power2[i] = 1L << i;
        }
 
        // generation of first few numbers
        // satisfying Euclid Euler's theorem
        System.out.print("Generating first few numbers " +
                         "satisfying Euclid Euler's theorem\n");
        for (int i = 2; i <= 25; i++)
        {
            long no = (power2[i] - 1) * (power2[i - 1]);
            if (isperfect(no) && (no % 2 == 0))
            {
                System.out.print("(2^" + i + " - 1) * (2^(" +
                                 i + " - 1)) = " + no + "\n");
            }
        }
    }
}
 
// This code is contributed by PrinciRaj1992


Python3




# Python3 code to verify Euclid Euler Theorem
#define show(x) cout << #x << " = " << x << "\n";
def isprime(n):
    i = 2
 
    # check whether a number is prime or not
    while(i * i <= n):
        if (n % i == 0):
            return False;
        i += 1
    return False;
 
def isperfect(n): # perfect numbers
 
    # check is n is perfect sum of divisors
    # except the number itself = number
    s = -n;
    i =1
    while(i * i <= n):
 
        # is i is a divisor of n
        if (n % i == 0):
            factor1 = i
            factor2 = n // i;
            s += factor1 + factor2;
 
            # here i*i == n
            if (factor1 == factor2):
                s -= i;   
        i += 1
    return (n == s);
 
# Driver code
if __name__=='__main__':
 
    # storing powers of 2 to access in O(1) time
    power2 = [1<<i for i in range(61)]
 
    # generation of first few numbers
    # satisfying Euclid Euler's theorem
    print("Generating first few numbers satisfying Euclid Euler's theorem");
    for i in range(2, 26):  
        no = (power2[i] - 1) * (power2[i - 1]);
        if (isperfect(no) and (no % 2 == 0)):
            print("(2^{} - 1) * (2^({} - 1)) = {}".format(i, i, no))
     
    # This code is contributed by rutvik_56.


C#




// C# code to verify Euclid Euler Theorem
using System;
using System.Collections.Generic;
     
class GFG
{
    static Boolean isprime(long n)
    {
        // check whether a number is prime or not
        for (int i = 2; i * i <= n; i++)
        {
            if (n % i == 0)
            {
                return false;
            }
        }
        return false;
    }
 
    static Boolean isperfect(long n) // perfect numbers
    {
        // check is n is perfect sum of divisors
        // except the number itself = number
        long s = -n;
        for (long i = 1; i * i <= n; i++)
        {
 
            // is i is a divisor of n
            if (n % i == 0)
            {
                long factor1 = i, factor2 = n / i;
                s += factor1 + factor2;
 
                // here i*i == n
                if (factor1 == factor2)
                {
                    s -= i;
                }
            }
        }
        return (n == s);
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        // storing powers of 2 to access in O(1) time
        long []power2 = new long[61];
        for (int i = 0; i <= 60; i++)
        {
            power2[i] = 1L << i;
        }
 
        // generation of first few numbers
        // satisfying Euclid Euler's theorem
        Console.Write("Generating first few numbers " +
                      "satisfying Euclid Euler's theorem\n");
        for (int i = 2; i <= 25; i++)
        {
            long no = (power2[i] - 1) * (power2[i - 1]);
            if (isperfect(no) && (no % 2 == 0))
            {
                Console.Write("(2^" + i + " - 1) * (2^(" +
                                i + " - 1)) = " + no + "\n");
            }
        }
    }
}
 
// This code is contributed by Rajput-Ji


PHP




<?php
// PHP code to verify
// Euclid Euler Theorem
 
// define show(x)
// cout << #x << " = " << x << "\n";
 
function isprime($n)
{
    // check whether a number
    // is prime or not
    for ($i = 2; $i * $i <= $n; $i++)
        if ($n % $i == 0)
            return false;
    return false;
}
 
function isperfect($n) // perfect numbers
{
    // check is n is perfect sum
    // of divisors except the
    // number itself = number
    $s = -$n;
    for ($i = 1;
         $i * $i <= $n; $i++)
    {
 
        // is i is a divisor of n
        if ($n % $i == 0)
        {
            $factor1 = $i;
            $factor2 = $n / $i;
            $s += $factor1 + $factor2;
 
            // here i*i == n
            if ($factor1 == $factor2)
                $s -= $i;
        }
    }
    return ($n == $s);
}
 
// Driver code
 
// storing powers of 2 to
// access in O(1) time
$power2 = array();
for ($i = 0; $i <= 60; $i++)
    $power2[$i] = 1<< $i;
 
// generation of first few
// numbers satisfying Euclid
// Euler's theorem
echo "Generating first few numbers " .
     "satisfying Euclid Euler's theorem\n";
      
for ($i = 2; $i <= 25; $i++)
{
    $no = ($power2[$i] - 1) *
          ($power2[$i - 1]);
    if (isperfect($no) &&
                 ($no % 2 == 0))
        echo "(2^" . $i . " - 1) * (2^(" .
                     $i . " - 1)) = " .
                     $no . "\n";
}
 
// This code is contributed by mits
?>


Javascript




<script>
 
// JavaScript program to verify Euclid Euler Theorem
 
    function isprime(n)
    {
        // check whether a number is prime or not
        for (let i = 2; i * i <= n; i++)
        {
            if (n % i == 0)
            {
                return false;
            }
        }
        return false;
    }
  
    function isperfect(n) // perfect numbers
    {
        // check is n is perfect sum of divisors
        // except the number itself = number
        let s = -n;
        for (let i = 1; i * i <= n; i++)
        {
  
            // is i is a divisor of n
            if (n % i == 0)
            {
                let factor1 = i, factor2 = n / i;
                s += factor1 + factor2;
  
                // here i*i == n
                if (factor1 == factor2)
                {
                    s -= i;
                }
            }
        }
        return (n == s);
    }
  
// Driver code
     
         // storing powers of 2 to access in O(1) time
        let power2 = [];
        for (let i = 0; i <= 60; i++)
        {
            power2[i] = 1 << i;
        }
  
        // generation of first few numbers
        // satisfying Euclid Euler's theorem
        document.write("Generating first few numbers " +
                         "satisfying Euclid Euler's theorem" + "<br/>");
        for (let i = 2; i <= 25; i++)
        {
            let no = (power2[i] - 1) * (power2[i - 1]);
            if (isperfect(no) && (no % 2 == 0))
            {
                document.write("(2^" + i + " - 1) * (2^(" +
                                 i + " - 1)) = " + no + "<br/>");
            }
        }
     
    // This code is contributed by code_hunt.
</script>


Output: 

Generating first few numbers satisfying Euclid Euler's theorem
(2^2 - 1) * (2^(2 - 1)) = 6
(2^3 - 1) * (2^(3 - 1)) = 28
(2^5 - 1) * (2^(5 - 1)) = 496
(2^7 - 1) * (2^(7 - 1)) = 8128
(2^13 - 1) * (2^(13 - 1)) = 33550336
(2^17 - 1) * (2^(17 - 1)) = 8589869056
(2^19 - 1) * (2^(19 - 1)) = 137438691328

 

Time Complexity: O(sqrt(n))
Auxiliary Space: O(1) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha Wardslaus
Dominic Rubhabha Wardslaushttps://neveropen.dev
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Most Popular

Recent Comments