Friday, January 10, 2025
Google search engine
HomeData Modelling & AIEnlightened Numbers

Enlightened Numbers

Enlightened Number is a composite number N if it begins with the concatenation of its distinct prime factors
Some Enlightened numbers are: 
 

250, 256, 2048, 2176, 2304, 2500, 2560… 
 

Check if N is an Enlightened number

Given a number N, the task is to check if N is an Enlightened Number or not. If N is an Enlightened Number then print “Yes” else print “No”.
Examples: 
 

Input: N = 2500 
Output: Yes 
Explanation: 
factorization of 25 = 2^2 * 5^4 
and N begins also with ’25’.
Input: N = 25 
Output: No 
 

Approach: The idea is to check if N is composite or not, If not composite return false otherwise concatenate all the distinct prime factors of the number N in a string. Also, convert the number N to string. Now we just have to check if the concatenation of distinct prime factors is a prefix of the number N or not, If it is then print “Yes” else print “No”.
Below is the implementation of the above approach:
 

C++




// C++ implementation of the
// above approach
#include<iostream>
#include<math.h>
using namespace std;
 
// Function to check if N is a
// Composite Number
bool isComposite(int n)
{
     
    // Corner cases
    if (n <= 3)
        return false;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return true;
         
    for(int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return true;
             
    return false;
}
 
// Function to return concatenation of
// distinct prime factors of a given number n
int concatenatePrimeFactors(int n)
{
    char concatenate;
 
    // Handle prime factor 2 explicitly
    // so that can optimally handle
    // other prime factors.
    if (n % 2 == 0)
    {
        concatenate += char(2);
        while (n % 2 == 0)
            n = n / 2;
    }
 
    // n must be odd at this point.
    // So we can skip one element
    // (Note i = i + 2)
    for(int i = 3; i <= sqrt(n); i = i + 2)
    {
        // While i divides n, print
        // i and divide n
        if (n % i == 0)
        {
            concatenate += i;
            while (n % i == 0)
                n = n / i;
        }
    }
     
    // This condition is to handle the
    // case when n is a prime number
    // greater than 2
    if (n > 2)
        concatenate += n;
         
    return concatenate;
}
 
// Function to check if a number is
// is an enlightened number
bool isEnlightened(int N)
{
     
    // Number should not be prime
    if (!isComposite(N))
        return false;
         
    // Converting N to string
    char num = char(N);
     
    // Function call
    char prefixConc = concatenatePrimeFactors(N);
     
    return int(prefixConc);
}
 
// Driver code
int main()
{
    int n = 250;
     
    if (isEnlightened(n))
        cout << "Yes";
    else
        cout << "No";
}
 
// This code is contributed by adityakumar27200


Java




// Java implementation of the
// above approach
 
import java.util.*;
 
class GFG {
 
    // Function to check if N is a
    // Composite Number
    static boolean isComposite(int n)
    {
        // Corner cases
        if (n <= 3)
            return false;
 
        // This is checked so that we can skip
        // middle five numbers in below loop
        if (n % 2 == 0 || n % 3 == 0)
            return true;
 
        for (int i = 5; i * i <= n; i = i + 6)
            if (n % i == 0 || n % (i + 2) == 0)
                return true;
 
        return false;
    }
 
    // Function to return concatenation of
    // distinct prime factors of a given number n
    static String concatenatePrimeFactors(int n)
    {
        String concatenate = "";
 
        // Handle prime factor 2 explicitly
        // so that can optimally handle
        // other prime factors.
        if (n % 2 == 0) {
            concatenate += "2";
            while (n % 2 == 0)
                n = n / 2;
        }
 
        // n must be odd at this point.
        // So we can skip one element
        // (Note i = i + 2)
        for (int i = 3; i <= Math.sqrt(n); i = i + 2) {
            // While i divides n, print
            // i and divide n
            if (n % i == 0) {
                concatenate += i;
                while (n % i == 0)
                    n = n / i;
            }
        }
 
        // This condition is to handle the
        // case when n is a prime number
        // greater than 2
        if (n > 2)
            concatenate += n;
 
        return concatenate;
    }
 
    // Function to check if a number is
    // is an enlightened number
    static boolean isEnlightened(int N)
    {
        // number should not be prime
        if (!isComposite(N))
            return false;
 
        // converting N to string
        String num = String.valueOf(N);
        // function call
        String prefixConc
            = concatenatePrimeFactors(N);
 
        return num.startsWith(prefixConc);
    }
 
    // Driver code
    public static void main(String args[])
    {
 
        int n = 250;
        if (isEnlightened(n))
            System.out.println("Yes");
        else
            System.out.println("No");
    }
}


Python3




# Python3 implementation of the
# above approach
import math
 
# Function to check if N is a
# Composite Number
def isComposite(n):
     
    # Corner cases
    if n <= 3:
        return False
     
    # This is checked so that we can skip
    # middle five numbers in below loop
    if (n % 2 == 0 or n % 3 == 0):
        return True
     
    i = 5
    while(i * i <= n):
        if(n % i == 0 or n % (i + 2) == 0):
            return True
        i = i + 6
         
    return False
 
# Function to return concatenation of
# distinct prime factors of a given number n    
def concatenatePrimeFactors(n):
     
    concatenate = ""
     
    # Handle prime factor 2 explicitly
    # so that can optimally handle
    # other prime factors.
    if(n % 2 == 0):
        concatenate += "2"
         
        while(n % 2 == 0):
            n = int(n / 2)
 
    # n must be odd at this point.
    # So we can skip one element
    # (Note i = i + 2)
    i = 3
    while(i <= int(math.sqrt(n))):
         
        # While i divides n, print
        # i and divide n
        if(n % i == 0):
            concatenate += str(i)
             
            while(n % i == 0):
                n = int(n / i)
 
        i = i + 2
         
    # This condition is to handle the
    # case when n is a prime number
    # greater than 2    
    if(n > 2):
        concatenate += str(n)
         
    return concatenate
 
# Function to check if a number is
# is an enlightened number
def isEnlightened(N):
     
    # Number should not be prime
    if(not isComposite(N)):
        return False
     
    # Converting N to string    
    num = str(N)
     
    # Function call
    prefixConc = concatenatePrimeFactors(N)
     
    return int(prefixConc)
 
# Driver code   
if __name__=="__main__":
     
    n = 250
     
    if(isEnlightened(n)):
        print("Yes")
    else:
        print("No")
 
# This code is contributed by adityakumar27200


C#




// C# implementation of the
// above approach
using System;
 
class GFG{
 
// Function to check if N is a
// Composite Number
static bool isComposite(int n)
{
     
    // Corner cases
    if (n <= 3)
        return false;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return true;
 
    for(int i = 5; i * i <= n; i = i + 6)
       if (n % i == 0 || n % (i + 2) == 0)
           return true;
 
    return false;
}
 
// Function to return concatenation of
// distinct prime factors of a given number n
static String concatenatePrimeFactors(int n)
{
    String concatenate = "";
 
    // Handle prime factor 2 explicitly
    // so that can optimally handle
    // other prime factors.
    if (n % 2 == 0)
    {
        concatenate += "2";
        while (n % 2 == 0)
            n = n / 2;
    }
 
    // n must be odd at this point.
    // So we can skip one element
    // (Note i = i + 2)
    for(int i = 3; i <= Math.Sqrt(n);
            i = i + 2)
    {
         
       // While i divides n, print
       // i and divide n
       if (n % i == 0)
       {
           concatenate += i;
           while (n % i == 0)
               n = n / i;
       }
    }
     
    // This condition is to handle the
    // case when n is a prime number
    // greater than 2
    if (n > 2)
        concatenate += n;
 
    return concatenate;
}
 
// Function to check if a number is
// is an enlightened number
static bool isEnlightened(int N)
{
     
    // Number should not be prime
    if (!isComposite(N))
        return false;
 
    // Converting N to string
    String num = String.Join("", N);
     
    // Function call
    String prefixConc = concatenatePrimeFactors(N);
 
    return num.StartsWith(prefixConc);
}
 
// Driver code
public static void Main(String []args)
{
    int n = 250;
     
    if (isEnlightened(n))
        Console.WriteLine("Yes");
    else
        Console.WriteLine("No");
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// Javascript implementation of the
// above approach
 
// Function to check if N is a
// Composite Number
function isComposite(n)
{
     
    // Corner cases
    if (n <= 3)
        return false;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return true;
         
    for(var i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return true;
             
    return false;
}
 
// Function to return concatenation of
// distinct prime factors of a given number n
function concatenatePrimeFactors(n)
{
    var concatenate;
 
    // Handle prime factor 2 explicitly
    // so that can optimally handle
    // other prime factors.
    if (n % 2 == 0)
    {
        concatenate += "2";
        while (n % 2 == 0)
            n = parseInt(n / 2);
    }
 
    // n must be odd at this point.
    // So we can skip one element
    // (Note i = i + 2)
    for(var i = 3; i <= Math.sqrt(n); i = i + 2)
    {
        // While i divides n, print
        // i and divide n
        if (n % i == 0)
        {
            concatenate += i;
            while (n % i == 0)
                n = parseInt(n / i);
        }
    }
     
    // This condition is to handle the
    // case when n is a prime number
    // greater than 2
    if (n > 2)
        concatenate += n;
         
    return concatenate;
}
 
// Function to check if a number is
// is an enlightened number
function isEnlightened(N)
{
     
    // Number should not be prime
    if (!isComposite(N))
        return false;
         
    // Converting N to string
    var num = (N.toString());
     
    // Function call
    var prefixConc = concatenatePrimeFactors(N);
     
    return (prefixConc);
}
 
// Driver code
var n = 250;
 
if (isEnlightened(n))
    document.write( "Yes");
else
    document.write( "No");
 
 
</script>


Output: 

Yes

 

Time Complexity: O(n) 
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
22 Apr, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments