Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AIDuplicates Removal in Array using BST

Duplicates Removal in Array using BST

Given an array arr[] of integers, the task is to remove duplicates from the given array. 

Examples

Input: arr[] = {1, 2, 3, 2, 5, 4, 4}
Output: arr[] = {1, 2, 3, 4, 5} 

Input: arr[] = {127, 234, 127, 654, 355, 789, 355, 355, 999, 654}
Output: arr[] = {127, 234, 355, 654, 789, 999}

The duplicates in the array can be removed using Binary Search Tree. The idea is to create a Binary Search Tree using the array elements with the condition that the first element is taken as the root(parent) element and when the element “less” than root appears, it is made the left child and the element “greater” than root is made the right child of the root. Since no condition for “equal” exists the duplicates are automatically removed when we form a binary search tree from the array elements. 

For the array, arr[] = {1, 2, 3, 2, 5, 4, 4}
BST will be: 
 

 

Approach: 

  • Form BST using the array elements
  • Display the elements using any Tree Traversal method.

Below is the implementation of the above approach. 

C++




// C++ Program of above implementation
#include <iostream>
using namespace std;
 
// Struct declaration
struct Node {
    int data;
    struct Node* left;
    struct Node* right;
};
 
// Node creation
struct Node* newNode(int data)
{
    struct Node* nn
        = new Node;
    nn->data = data;
    nn->left = NULL;
    nn->right = NULL;
    return nn;
}
 
// Function to insert data in BST
struct Node* insert(struct Node* root, int data)
{
    if (root == NULL)
        return newNode(data);
    else {
        if (data < root->data)
            root->left = insert(root->left, data);
        if (data > root->data)
            root->right = insert(root->right, data);
        return root;
    }
}
 
// InOrder function to display value of array
// in sorted order
void inOrder(struct Node* root)
{
    if (root == NULL)
        return;
    else {
        inOrder(root->left);
        cout << root->data << " ";
        inOrder(root->right);
    }
}
 
// Driver code
int main()
{
    int arr[] = { 1, 2, 3, 2, 5, 4, 4 };
 
    // Finding size of array arr[]
    int n = sizeof(arr) / sizeof(arr[0]);
 
    struct Node* root = NULL;
 
    for (int i = 0; i < n; i++) {
 
        // Insert element of arr[] in BST
        root = insert(root, arr[i]);
    }
 
    // Inorder Traversal to print nodes of Tree
    inOrder(root);
    return 0;
}
 
// This code is contributed by shivanisingh


C




// C Program of above implementation
#include <stdio.h>
#include <stdlib.h>
 
// Struct declaration
struct Node {
    int data;
    struct Node* left;
    struct Node* right;
};
 
// Node creation
struct Node* newNode(int data)
{
    struct Node* nn
        = (struct Node*)(malloc(sizeof(struct Node)));
    nn->data = data;
    nn->left = NULL;
    nn->right = NULL;
    return nn;
}
 
// Function to insert data in BST
struct Node* insert(struct Node* root, int data)
{
    if (root == NULL)
        return newNode(data);
    else {
        if (data < root->data)
            root->left = insert(root->left, data);
        if (data > root->data)
            root->right = insert(root->right, data);
        return root;
    }
}
 
// InOrder function to display value of array
// in sorted order
void inOrder(struct Node* root)
{
    if (root == NULL)
        return;
    else {
        inOrder(root->left);
        printf("%d ", root->data);
        inOrder(root->right);
    }
}
 
// Driver code
int main()
{
    int arr[] = { 1, 2, 3, 2, 5, 4, 4 };
 
    // Finding size of array arr[]
    int n = sizeof(arr) / sizeof(arr[0]);
 
    struct Node* root = NULL;
 
    for (int i = 0; i < n; i++) {
 
        // Insert element of arr[] in BST
        root = insert(root, arr[i]);
    }
 
    // Inorder Traversal to print nodes of Tree
    inOrder(root);
    return 0;
}


Java




// Java implementation of the approach
import java.util.Scanner;
 
// Node declaration
class Node
{
    int data;
    public Node left;
    public Node right;
    Node(int data)
    {
        this.data = data;
        left = right = null;
    }
}
 
class GFG
{
 
    // Function to insert data in BST
    public static Node insert(Node root, int data)
    {
        if (root == null)
            return new Node(data);
        if (data < root.data)
            root.left = insert(root.left, data);
        if (data > root.data)
            root.right = insert(root.right, data);
        return root;
    }
 
    // InOrder function to display value of array
    // in sorted order
    public static void inOrder(Node root)
    {
        if (root == null)
            return;
        inOrder(root.left);
        System.out.print(root.data+" ");
        inOrder(root.right);
    }
 
    // Driver Code
    public static void main(String []args){
        int arr[] = { 1, 2, 3, 2, 5, 4, 4 };
 
        // Finding size of array arr[]
        int n = arr.length;
 
        Node root = null;
        for (int i = 0; i < n; i++)
        {
            // Insert element of arr[] in BST
            root = insert(root,arr[i]);
        }
 
        // Inorder Traversal to print nodes of Tree
        inOrder(root);
    }
}
 
// This code is contributed by anishma


Python3




# Python3 implementation of the approach
 
# Binary tree node consists of data, a
# pointer to the left child and a
# pointer to the right child
class newNode :
    def __init__(self,data) :
        self.data = data;
        self.left = None;
        self.right = None;
 
# Function to insert data in BST
def insert(root, data) :
 
    if (root == None) :
        return newNode(data);
         
    else :
        if (data < root.data) :
            root.left = insert(root.left, data);
             
        if (data > root.data) :
            root.right = insert(root.right, data);
             
        return root;
 
# InOrder function to display value of array
# in sorted order
def inOrder(root) :
 
    if (root == None) :
        return;
         
    else :
        inOrder(root.left);
        print(root.data, end = " ");
        inOrder(root.right);
     
# Driver code
if __name__ == "__main__" :
 
    arr = [ 1, 2, 3, 2, 5, 4, 4 ];
 
    # Finding size of array arr[]
    n = len(arr);
 
    root = None;
 
    for i in range(n) :
 
        # Insert element of arr[] in BST
        root = insert(root, arr[i]);
 
    # Inorder Traversal to print nodes of Tree
    inOrder(root);
 
# This code is contributed by AnkitRai01


C#




// C# program of above implementation
using System;
 
// Node declaration 
public class Node 
    public int data; 
    public Node left; 
    public Node right;
     
    public Node(int data)
    {
        this.data = data;
        left = right = null;
    }
}
     
class GFG{
     
// Function to insert data in BST 
public static Node insert(Node root, int data)
{
    if (root == null)
        return new Node(data);
    if (data < root.data) 
        root.left = insert(root.left, data); 
    if (data > root.data)
        root.right = insert(root.right, data);
         
    return root; 
 
// InOrder function to display value of array 
// in sorted order 
public static void inOrder(Node root)
    if (root == null
        return
         
    inOrder(root.left); 
    Console.Write(root.data + " ");
    inOrder(root.right); 
}
 
// Driver Code   
static void Main()
{
    int[] arr = { 1, 2, 3, 2, 5, 4, 4 }; 
     
    // Finding size of array arr[] 
    int n = arr.Length; 
     
    Node root = null
    for(int i = 0; i < n; i++) 
    
         
        // Insert element of arr[] in BST
        root = insert(root, arr[i]);
    
     
    // Inorder Traversal to print nodes of Tree 
    inOrder(root);
}
}
 
// This code is contributed by divyeshrabadiya07


Javascript




<script>
 
// JavaScript program of above implementation
 
// Node declaration 
class Node 
    constructor(data)
    {
        this.data = data;
        this.left = null;
        this.right = null;
    }
}
 
 
// Function to insert data in BST 
function insert(root, data)
{
    if (root == null)
        return new Node(data);
    if (data < root.data) 
        root.left = insert(root.left, data); 
    if (data > root.data)
        root.right = insert(root.right, data);
         
    return root; 
 
// InOrder function to display value of array 
// in sorted order 
function inOrder(root)
    if (root == null
        return
         
    inOrder(root.left); 
    document.write(root.data + " ");
    inOrder(root.right); 
}
 
// Driver Code   
var arr = [1, 2, 3, 2, 5, 4, 4 ]; 
 
// Finding size of array arr[] 
var n = arr.length; 
 
var root = null
for(var i = 0; i < n; i++) 
     
    // Insert element of arr[] in BST
    root = insert(root, arr[i]);
 
// Inorder Traversal to print nodes of Tree 
inOrder(root);
 
 
</script>


Output: 

1 2 3 4 5

 

Time Complexity: O(N^2)      in the worst case(when the array is sorted) where N is the size of the given array.
Auxiliary Space: O(N).  

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments