In this article, we are going to drop the rows in PySpark dataframe. We will be considering most common conditions like dropping rows with Null values, dropping duplicate rows, etc. All these conditions use different functions and we will discuss these in detail.
We will cover the following topics:
- Drop rows with condition using where() and filter() keyword.
- Drop rows with NA or missing values
- Drop rows with Null values
- Drop duplicate rows.
- Drop duplicate rows based on column
Creating Dataframe for demonstration:
Python3
# importing module import pyspark # importing sparksession from pyspark.sql module from pyspark.sql import SparkSession # creating sparksession and giving an app name spark = SparkSession.builder.appName( 'sparkdf' ).getOrCreate() # list of students data data = [[ "1" , "sravan" , "vignan" ], [ "2" , "ojaswi" , "vvit" ], [ "3" , "rohith" , "vvit" ], [ "4" , "sridevi" , "vignan" ], [ "6" , "ravi" , "vrs" ], [ "5" , "gnanesh" , "iit" ]] # specify column names columns = [ 'ID' , 'NAME' , 'college' ] # creating a dataframe from the lists of data dataframe = spark.createDataFrame(data, columns) print ( 'Actual data in dataframe' ) dataframe.show() |
Output:
Drop rows with condition using where() and filter() Function
Here we are going to drop row with the condition using where() and filter() function.
where(): This function is used to check the condition and give the results. That means it drops the rows based on the condition
Syntax: dataframe.where(condition)
filter(): This function is used to check the condition and give the results, Which means it drops the rows based on the condition.
Syntax: dataframe.filter(condition)
Example 1: Using Where()
Python program to drop rows where ID less than 4
Python3
# drop rows with id less than 4 dataframe.where(dataframe. ID > 4 ).show() |
Output:
Drop rows with college ‘vrs’:
Python3
# drop rows with college vrs dataframe.where(dataframe.college ! = 'vrs' ).show() |
Output:
Example 2: Using filter() function
Python program to drop rows with id=4
Python3
# drop rows with id 4 dataframe. filter (dataframe. ID ! = '4' ).show() |
Output:
Drop rows with NA values using dropna
NA values are the missing value in the dataframe, we are going to drop the rows having the missing values. They are represented as null, by using dropna() method we can filter the rows.
Syntax: dataframe.dropna()
Python3
# importing module import pyspark # importing sparksession from pyspark.sql module from pyspark.sql import SparkSession # creating sparksession and giving an app name spark = SparkSession.builder.appName( 'sparkdf' ).getOrCreate() # list of employee data with 5 row values data = [[ "1" , "sravan" , "company 1" ], [ "2" , "ojaswi" , "company 2" ], [ None , "bobby" , "company 3" ], [ "1" , "sravan" , "company 1" ], [ "2" , "ojaswi" , None ], [ "4" , "rohith" , "company 2" ], [ "5" , "gnanesh" , "company 1" ], [ "2" , None , "company 2" ], [ "3" , "bobby" , "company 3" ], [ "4" , "rohith" , "company 2" ]] # specify column names columns = [ 'Employee ID' , 'Employee NAME' , 'Company Name' ] # creating a dataframe from the lists of data dataframe = spark.createDataFrame(data, columns) # display actual dataframe dataframe.show() # drop missing values dataframe = dataframe.dropna() # display dataframe after dropping null values dataframe.show() |
Output:
Drop rows with Null values using isNotNull
Here we are dropping the rows with null values, we are using isNotNull() function to drop the rows
Syntax: dataframe.where(dataframe.column.isNotNull())
Python program to drop null values based on a particular column
Python3
# importing module import pyspark # importing sparksession from pyspark.sql module from pyspark.sql import SparkSession # creating sparksession and giving an app name spark = SparkSession.builder.appName( 'sparkdf' ).getOrCreate() # list of employee data with 5 row values data = [[ "1" , "sravan" , "company 1" ], [ "2" , "ojaswi" , "company 2" ], [ None , "bobby" , "company 3" ], [ "1" , "sravan" , "company 1" ], [ "2" , "ojaswi" , None ], [ None , "rohith" , "company 2" ], [ "5" , "gnanesh" , "company 1" ], [ "2" , None , "company 2" ], [ "3" , "bobby" , "company 3" ], [ "4" , "rohith" , "company 2" ]] # specify column names columns = [ 'ID' , 'Employee NAME' , 'Company Name' ] # creating a dataframe from the lists of data dataframe = spark.createDataFrame(data, columns) dataframe.show() # removing null values in ID column dataframe.where(dataframe. ID .isNotNull()).show() |
Output:
Drop duplicate rows
Duplicate rows mean rows are the same among the dataframe, we are going to remove those rows by using dropDuplicates() function.
Example 1: Python code to drop duplicate rows.
Syntax: dataframe.dropDuplicates()
Python3
# importing module import pyspark # importing sparksession from pyspark.sql module from pyspark.sql import SparkSession # creating sparksession and giving an app name spark = SparkSession.builder.appName( 'sparkdf' ).getOrCreate() # list of employee data with 5 row values data = [[ "1" , "sravan" , "company 1" ], [ "2" , "ojaswi" , "company 2" ], [ "3" , "bobby" , "company 3" ], [ "1" , "sravan" , "company 1" ], [ "2" , "ojaswi" , "company 2" ], [ "6" , "rohith" , "company 2" ], [ "5" , "gnanesh" , "company 1" ], [ "2" , "ojaswi" , "company 2" ], [ "3" , "bobby" , "company 3" ], [ "4" , "rohith" , "company 2" ]] # specify column names columns = [ 'ID' , 'Employee NAME' , 'Company Name' ] # creating a dataframe from the lists of data dataframe = spark.createDataFrame(data, columns) dataframe.show() # remove the duplicates dataframe.dropDuplicates().show() |
Output:
Example 2: Drop duplicates based on the column name.
Syntax: dataframe.dropDuplicates([‘column_name’])
Python code to drop duplicates based on employee name
Python3
# remove the duplicates dataframe.dropDuplicates([ 'Employee NAME' ]).show() |
Output:
Remove duplicate rows by using a distinct function
We can remove duplicate rows by using a distinct function.
Syntax: dataframe.distinct()
Python3
# importing module import pyspark # importing sparksession from pyspark.sql module from pyspark.sql import SparkSession # creating sparksession and giving an app name spark = SparkSession.builder.appName( 'sparkdf' ).getOrCreate() # list of employee data with 5 row values data = [[ "1" , "sravan" , "company 1" ], [ "2" , "ojaswi" , "company 2" ], [ "3" , "bobby" , "company 3" ], [ "1" , "sravan" , "company 1" ], [ "2" , "ojaswi" , "company 2" ], [ "6" , "rohith" , "company 2" ], [ "5" , "gnanesh" , "company 1" ], [ "2" , "ojaswi" , "company 2" ], [ "3" , "bobby" , "company 3" ], [ "4" , "rohith" , "company 2" ]] # specify column names columns = [ 'ID' , 'Employee NAME' , 'Company Name' ] # creating a dataframe from the lists of data dataframe = spark.createDataFrame(data, columns) # remove the duplicates by using distinct function dataframe.distinct().show() |
Output: