Thursday, December 26, 2024
Google search engine
HomeLanguagesDrop columns in DataFrame by label Names or by Index Positions

Drop columns in DataFrame by label Names or by Index Positions

In this article, we will discuss how to drop columns in Pandas Dataframe by label Names or by Index Positions. Drop columns from a DataFrame can be achieved in multiple ways.

Let’s create a simple dataframe with a dictionary of lists, say column names are: ‘Name’, ‘Age’, ‘Place’, ‘College’.




# import pandas library as pd
import pandas as pd
  
# List of Tuples
students = [('Ankit', 22, 'Up', 'Geu'),
           ('Ankita', 31, 'Delhi', 'Gehu'),
           ('Rahul', 16, 'Tokyo', 'Abes'),
           ('Simran', 41, 'Delhi', 'Gehu'),
           ('Shaurya', 33, 'Delhi', 'Geu'),
           ('Harshita', 35, 'Mumbai', 'Bhu' ),
           ('Swapnil', 35, 'Mp', 'Geu'),
           ('Priya', 35, 'Uk', 'Geu'),
           ('Jeet', 35, 'Guj', 'Gehu'),
           ('Ananya', 35, 'Up', 'Bhu')
            ]
  
# Create a DataFrame object from
# list of tuples with columns
# and indices.
details = pd.DataFrame(students,
                       columns =['Name', 'Age'
                                 'Place', 'College'],
                        index =['a', 'b', 'c', 'd', 'e'
                                'f', 'g', 'i', 'j', 'k'])
# show the dataframe
details


Output :
dataframe image

Method 1: Drop Columns from a Dataframe using dataframe.drop() method.
Example 1: Remove specific single mention column.




# import pandas library as pd
import pandas as pd
  
# List of Tuples
students = [('Ankit', 22, 'Up', 'Geu'),
           ('Ankita', 31, 'Delhi', 'Gehu'),
           ('Rahul', 16, 'Tokyo', 'Abes'),
           ('Simran', 41, 'Delhi', 'Gehu'),
           ('Shaurya', 33, 'Delhi', 'Geu'),
           ('Harshita', 35, 'Mumbai', 'Bhu' ),
           ('Swapnil', 35, 'Mp', 'Geu'),
           ('Priya', 35, 'Uk', 'Geu'),
           ('Jeet', 35, 'Guj', 'Gehu'),
           ('Ananya', 35, 'Up', 'Bhu')
            ]
  
# Create a DataFrame object from
# list of tuples with columns
# and indices.
details = pd.DataFrame(students, 
                       columns =['Name', 'Age',
                                 'Place', 'College'],
                       index =['a', 'b', 'c', 'd', 'e',
                               'f', 'g', 'i', 'j', 'k'])
  
# Remove column name 'Age' 
rslt_df = details.drop(['Age'],
                       axis = 1)
# show the dataframe
rslt_df


Output :
drop column from dataframe - 1

Example 2 : Remove specific multiple mentions columns.




# import pandas library as pd
import pandas as pd
  
# List of Tuples
students = [('Ankit', 22, 'Up', 'Geu'),
           ('Ankita', 31, 'Delhi', 'Gehu'),
           ('Rahul', 16, 'Tokyo', 'Abes'),
           ('Simran', 41, 'Delhi', 'Gehu'),
           ('Shaurya', 33, 'Delhi', 'Geu'),
           ('Harshita', 35, 'Mumbai', 'Bhu' ),
           ('Swapnil', 35, 'Mp', 'Geu'),
           ('Priya', 35, 'Uk', 'Geu'),
           ('Jeet', 35, 'Guj', 'Gehu'),
           ('Ananya', 35, 'Up', 'Bhu')
            ]
  
# Create a DataFrame object from
# list of tuples with columns
# and indices.
details = pd.DataFrame(students, 
                       columns =['Name', 'Age'
                                 'Place', 'College'],
                       index =['a', 'b', 'c', 'd', 'e',
                               'f', 'g', 'i', 'j', 'k'])
  
# Remove two columns name is 'Age' and 
# 'College' 
rslt_df = details.drop(['Age', 'College'],
                       axis = 1)
# show the dataframe
rslt_df


Output :
drop column from dataframe - 2

Example 3: Remove columns as based on column index.




# import pandas library as pd
import pandas as pd
  
# List of Tuples
students = [('Ankit', 22, 'Up', 'Geu'),
           ('Ankita', 31, 'Delhi', 'Gehu'),
           ('Rahul', 16, 'Tokyo', 'Abes'),
           ('Simran', 41, 'Delhi', 'Gehu'),
           ('Shaurya', 33, 'Delhi', 'Geu'),
           ('Harshita', 35, 'Mumbai', 'Bhu' ),
           ('Swapnil', 35, 'Mp', 'Geu'),
           ('Priya', 35, 'Uk', 'Geu'),
           ('Jeet', 35, 'Guj', 'Gehu'),
           ('Ananya', 35, 'Up', 'Bhu')
            ]
  
# Create a DataFrame object from
# list of tuples with columns
# and indices.
details = pd.DataFrame(students,
                       columns =['Name', 'Age'
                                 'Place', 'College'],
                       index =['a', 'b', 'c', 'd', 'e',
                               'f', 'g', 'i', 'j', 'k'])
  
# Remove three columns as index base
# 0, 1, 2
rslt_df = details.drop(details.columns[[0, 1, 2]],
                       axis = 1)
  
# show the dataframe
rslt_df


Output :
drop column from dataframe - 3

Method 2: Drop Columns from a Dataframe using iloc[] and drop() method.

Example: Remove all columns between a specific column to another columns(exclude)




# import pandas library as pd
import pandas as pd
  
# List of Tuples
students = [('Ankit', 22, 'Up', 'Geu'),
           ('Ankita', 31, 'Delhi', 'Gehu'),
           ('Rahul', 16, 'Tokyo', 'Abes'),
           ('Simran', 41, 'Delhi', 'Gehu'),
           ('Shaurya', 33, 'Delhi', 'Geu'),
           ('Harshita', 35, 'Mumbai', 'Bhu' ),
           ('Swapnil', 35, 'Mp', 'Geu'),
           ('Priya', 35, 'Uk', 'Geu'),
           ('Jeet', 35, 'Guj', 'Gehu'),
           ('Ananya', 35, 'Up', 'Bhu')
            ]
  
# Create a DataFrame object from
# list of tuples with columns
# and indices.
details = pd.DataFrame(students, 
                       columns =['Name', 'Age'
                                 'Place', 'College'],
                       index =['a', 'b', 'c', 'd', 'e'
                               'f', 'g', 'i', 'j', 'k'])
  
# Remove all columns from column
# index 1 to 3(exclude) 
rslt_df = details.drop(details.iloc[:, 1:3],
                       axis = 1)
  
# show the dataframe
rslt_df


Output :
drop column from dataframe - 4

Method 3: Drop Columns from a Dataframe using loc[] and drop() method.
Example: Remove all columns between a specific column name to another columns name.




# import pandas library as pd
import pandas as pd
  
# List of Tuples
students = [('Ankit', 22, 'Up', 'Geu'),
           ('Ankita', 31, 'Delhi', 'Gehu'),
           ('Rahul', 16, 'Tokyo', 'Abes'),
           ('Simran', 41, 'Delhi', 'Gehu'),
           ('Shaurya', 33, 'Delhi', 'Geu'),
           ('Harshita', 35, 'Mumbai', 'Bhu' ),
           ('Swapnil', 35, 'Mp', 'Geu'),
           ('Priya', 35, 'Uk', 'Geu'),
           ('Jeet', 35, 'Guj', 'Gehu'),
           ('Ananya', 35, 'Up', 'Bhu')
            ]
  
# Create a DataFrame object from
# list of tuples with columns
# and indices.
details = pd.DataFrame(students, 
                       columns =['Name', 'Age'
                                 'Place', 'College'],
                       index =['a', 'b', 'c', 'd', 'e'
                               'f', 'g', 'i', 'j', 'k'])
  
# Remove all columns from column name 
# 'Name' to 'College' 
rslt_df = details.drop(details.loc[:, 'Name':'College'].columns,
                       axis = 1)
  
# show the dataframe
# only indexes print
rslt_df


Output :
drop column from dataframe - 6

Note: Different loc() and iloc() is iloc() exclude last column range element.

Method 4: Drop Columns from a Dataframe by iterative way.
Example: Remove specific column.




# import pandas library as pd
import pandas as pd
  
# List of Tuples
students = [('Ankit', 22, 'Up', 'Geu'),
           ('Ankita', 31, 'Delhi', 'Gehu'),
           ('Rahul', 16, 'Tokyo', 'Abes'),
           ('Simran', 41, 'Delhi', 'Gehu'),
           ('Shaurya', 33, 'Delhi', 'Geu'),
           ('Harshita', 35, 'Mumbai', 'Bhu' ),
           ('Swapnil', 35, 'Mp', 'Geu'),
           ('Priya', 35, 'Uk', 'Geu'),
           ('Jeet', 35, 'Guj', 'Gehu'),
           ('Ananya', 35, 'Up', 'Bhu')
            ]
  
# Create a DataFrame object from
# list of tuples with columns
# and indices.
details = pd.DataFrame(students, 
                       columns =['Name', 'Age'
                                 'Place', 'College'],
                       index =['a', 'b', 'c', 'd', 'e',
                               'f', 'g', 'i', 'j', 'k'])
  
# loop throughout all the columns
for column in details.columns :
    if column == 'Age' :
          
        # delete the column
        del details[column]
          
# show the dataframe
details


Output :
drop column from dataframe - 7

RELATED ARTICLES

Most Popular

Recent Comments