Given an N-ary tree T of N nodes, the task is to calculate the longest path between any two nodes(also known as the diameter of the tree).
Example 1:
Example 2:
Different approaches to solving these problems have already been discussed:
- https://www.geeksforgeeks.org/diameter-n-ary-tree/
- https://www.geeksforgeeks.org/diameter-n-ary-tree-using-bfs/
In this post, we will be discussing an approach that uses Dynamic Programming on Trees.
Prerequisites:
There are two possibilities for the diameter to exist:
- Case 1: Suppose the diameter starts from a node and ends at some node in its subtree. Let’s say that there exists a node x such that the longest path starts from node x and goes into its subtree and ends at some node in the subtree itself. Let’s define this path length by dp1[x].
- Case 2: Suppose the diameter or the longest path starts in the subtree of a node x, passes through it, and ends in its subtree. Let’s define this path by dp2[x].
If for all nodes x, we take a maximum of dp1[x], and dp2[x], then we will get the diameter of the tree.
For the case-1, to find dp1[node], we need to find the maximum of all dp1[x], where x is the children of node. And dp1[node] will be equal to 1 + max(dp1[children1], dp1[children2], ..).
For the case-2, to find dp2[node], we need to find the two maximum of all dp1[x], where x is the children of node. And dp2[node] will be equal to 1 + max 2 of(dp1[children1], dp1[children2], ..) + max(dp1[children1], dp1[children2], ..). This will ensure a complete path passing through the current node into its subtree.
We can easily run a DFS and find the maximum of both dp1[node] and dp2[node] for every to get the diameter of the tree.
Below is the implementation of the above approach:
C++
// C++ program to find diameter of a tree// using DFS.#include <bits/stdc++.h>using namespace std;int diameter = -1;// Function to find the diameter of the tree// using Dynamic Programmingint dfs(int node, int parent, int dp1[], int dp2[], list<int>* adj){ // Store the first maximum and secondmax int firstmax = -1; int secondmax = -1; // Traverse for all children of node for (auto i = adj[node].begin(); i != adj[node].end(); ++i) { if (*i == parent) continue; // Call DFS function again dfs(*i, node, dp1, dp2, adj); // Find first max if (firstmax == -1) { firstmax = dp1[*i]; } else if (dp1[*i] >= firstmax) // Secondmaximum { secondmax = firstmax; firstmax = dp1[*i]; } else if (dp1[*i] > secondmax) // Find secondmaximum { secondmax = dp1[*i]; } } // Base case for every node dp1[node] = 1; if (firstmax != -1) // Add dp1[node] += firstmax; // Find dp[2] if (secondmax != -1) dp2[node] = 1 + firstmax + secondmax; diameter = max(diameter, max(dp1[node], dp2[node])); // Return maximum of both return max(dp1[node], dp2[node]);}// Driver Codeint main(){ int n = 5; /* Constructed tree is 1 / \ 2 3 / \ 4 5 */ list<int>* adj = new list<int>[n + 1]; /*create undirected edges */ adj[1].push_back(2); adj[2].push_back(1); adj[1].push_back(3); adj[3].push_back(1); adj[2].push_back(4); adj[4].push_back(2); adj[2].push_back(5); adj[5].push_back(2); int dp1[n + 1], dp2[n + 1]; memset(dp1, 0, sizeof dp1); memset(dp2, 0, sizeof dp2); // Find diameter by calling function dfs(1, 1, dp1, dp2, adj) cout << "Diameter of the given tree is " << diameter << endl; return 0;} |
Java
// Java program to find diameter of a tree using DFS.import java.util.*;public class Main{ // Function to find the diameter of the tree // using Dynamic Programming static int dfs(int node, int parent, int[] dp1, int[] dp2, Vector<Vector<Integer>> adj) { // Store the first maximum and secondmax int firstmax = -1; int secondmax = -1; // Traverse for all children of node for (int i = 0; i < adj.get(node).size(); ++i) { if (adj.get(node).get(i) == parent) continue; // Call DFS function again dfs(adj.get(node).get(i), node, dp1, dp2, adj); // Find first max if (firstmax == -1) { firstmax = dp1[adj.get(node).get(i)]; } // Secondmaximum else if (dp1[adj.get(node).get(i)] >= firstmax) { secondmax = firstmax; firstmax = dp1[adj.get(node).get(i)]; } // Find secondmaximum else if (dp1[adj.get(node).get(i)] > secondmax) { secondmax = dp1[adj.get(node).get(i)]; } } // Base case for every node dp1[node] = 1; if (firstmax != -1) // Add dp1[node] += firstmax; // Find dp[2] if (secondmax != -1) dp2[node] = 1 + firstmax + secondmax; // Return maximum of both return Math.max(dp1[node], dp2[node]); } public static void main(String[] args) { int n = 5; /* Constructed tree is 1 / \ 2 3 / \ 4 5 */ Vector<Vector<Integer>> adj = new Vector<Vector<Integer>>(); for(int i = 0; i < n + 1; i++) { adj.add(new Vector<Integer>()); } /*create undirected edges */ adj.get(1).add(2); adj.get(2).add(1); adj.get(1).add(3); adj.get(3).add(1); adj.get(2).add(4); adj.get(4).add(2); adj.get(2).add(5); adj.get(5).add(2); int[] dp1 = new int[n + 1]; int[] dp2 = new int[n + 1]; for(int i = 0; i < n + 1; i++) { dp1[i] = 0; dp2[i] = 0; } // Find diameter by calling function System.out.println("Diameter of the given tree is " + dfs(1, 1, dp1, dp2, adj)); }}// This code is contributed by divyeshrabadiya07. |
Python3
# Python3 program to find diameter # of a tree using DFS. # Function to find the diameter of the # tree using Dynamic Programming def dfs(node, parent, dp1, dp2, adj): # Store the first maximum and secondmax firstmax, secondmax = -1, -1 # Traverse for all children of node for i in adj[node]: if i == parent: continue # Call DFS function again dfs(i, node, dp1, dp2, adj) # Find first max if firstmax == -1: firstmax = dp1[i] elif dp1[i] >= firstmax: # Secondmaximum secondmax = firstmax firstmax = dp1[i] elif dp1[i] > secondmax: # Find secondmaximum secondmax = dp1[i] # Base case for every node dp1[node] = 1 if firstmax != -1: # Add dp1[node] += firstmax # Find dp[2] if secondmax != -1: dp2[node] = 1 + firstmax + secondmax diameter = max(diameter, max(dp1[node], dp2[node])); # Return maximum of both return max(dp1[node], dp2[node]) # Driver Code if __name__ == "__main__": n, diameter = 5, -1 adj = [[] for i in range(n + 1)] # create undirected edges adj[1].append(2) adj[2].append(1) adj[1].append(3) adj[3].append(1) adj[2].append(4) adj[4].append(2) adj[2].append(5) adj[5].append(2) dp1 = [0] * (n + 1) dp2 = [0] * (n + 1) # Find diameter by calling function dfs(1, 1, dp1, dp2, adj) print("Diameter of the given tree is", diameter )# This code is contributed by Rituraj Jain |
C#
// C# program to find diameter of a tree using DFS.using System;using System.Collections.Generic;class GFG { // Function to find the diameter of the tree // using Dynamic Programming static int dfs(int node, int parent, int[] dp1, int[] dp2, List<List<int>> adj) { // Store the first maximum and secondmax int firstmax = -1; int secondmax = -1; // Traverse for all children of node for (int i = 0; i < adj[node].Count; ++i) { if (adj[node][i] == parent) continue; // Call DFS function again dfs(adj[node][i], node, dp1, dp2, adj); // Find first max if (firstmax == -1) { firstmax = dp1[adj[node][i]]; } // Secondmaximum else if (dp1[adj[node][i]] >= firstmax) { secondmax = firstmax; firstmax = dp1[adj[node][i]]; } // Find secondmaximum else if (dp1[adj[node][i]] > secondmax) { secondmax = dp1[adj[node][i]]; } } // Base case for every node dp1[node] = 1; if (firstmax != -1) // Add dp1[node] += firstmax; // Find dp[2] if (secondmax != -1) dp2[node] = 1 + firstmax + secondmax; // diameter = Math.Max(diameter, Math.Max(dp1[node], dp2[node])); // Return maximum of both return Math.Max(dp1[node], dp2[node]); } static void Main() { int n = 5; /* Constructed tree is 1 / \ 2 3 / \ 4 5 */ List<List<int>> adj = new List<List<int>>(); for(int i = 0; i < n + 1; i++) { adj.Add(new List<int>()); } /*create undirected edges */ adj[1].Add(2); adj[2].Add(1); adj[1].Add(3); adj[3].Add(1); adj[2].Add(4); adj[4].Add(2); adj[2].Add(5); adj[5].Add(2); int[] dp1 = new int[n + 1]; int[] dp2 = new int[n + 1]; for(int i = 0; i < n + 1; i++) { dp1[i] = 0; dp2[i] = 0; } // Find diameter by calling function Console.WriteLine("Diameter of the given tree is " + dfs(1, 1, dp1, dp2, adj)); }}// This code is contributed by decode2207. |
Javascript
<script> // JavaScript program to find diameter of a tree using DFS. let diameter = -1; // Function to find the diameter of the tree // using Dynamic Programming function dfs(node, parent, dp1, dp2, adj) { // Store the first maximum and secondmax let firstmax = -1; let secondmax = -1; // Traverse for all children of node for (let i = 0; i < adj[node].length; ++i) { if (adj[node][i] == parent) continue; // Call DFS function again dfs(adj[node][i], node, dp1, dp2, adj); // Find first max if (firstmax == -1) { firstmax = dp1[adj[node][i]]; } // Secondmaximum else if (dp1[adj[node][i]] >= firstmax) { secondmax = firstmax; firstmax = dp1[adj[node][i]]; } // Find secondmaximum else if (dp1[adj[node][i]] > secondmax) { secondmax = dp1[adj[node][i]]; } } // Base case for every node dp1[node] = 1; if (firstmax != -1) // Add dp1[node] += firstmax; // Find dp[2] if (secondmax != -1) dp2[node] = 1 + firstmax + secondmax; diameter = Math.max(diameter, Math.max(dp1[node], dp2[node])); // Return maximum of both return Math.max(dp1[node], dp2[node]); } let n = 5; /* Constructed tree is 1 / \ 2 3 / \ 4 5 */ let adj = new Array(n + 1); for(let i = 0; i < n + 1; i++) { adj[i] = []; } /*create undirected edges */ adj[1].push(2); adj[2].push(1); adj[1].push(3); adj[3].push(1); adj[2].push(4); adj[4].push(2); adj[2].push(5); adj[5].push(2); let dp1 = new Array(n + 1); let dp2 = new Array(n + 1); dp1.fill(0); dp2.fill(0); // Find diameter by calling function dfs(1, 1, dp1, dp2, adj) document.write("Diameter of the given tree is " + diameter);</script> |
Diameter of the given tree is 4
Time Complexity: O(n), as we are using recursion to traverse n times, where n is the total number of nodes in the tree.
Auxiliary Space: O(n), as we are using extra space for the dp arrays.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

