Sunday, January 12, 2025
Google search engine
HomeLanguagesDynamic ProgrammingDP on Trees | Set-3 ( Diameter of N-ary Tree )

DP on Trees | Set-3 ( Diameter of N-ary Tree )

Given an N-ary tree T of N nodes, the task is to calculate the longest path between any two nodes(also known as the diameter of the tree). 
Example 1: 
 

Example 2: 
 

 

Different approaches to solving these problems have already been discussed: 
 

In this post, we will be discussing an approach that uses Dynamic Programming on Trees
Prerequisites
 

There are two possibilities for the diameter to exist: 
 

  • Case 1: Suppose the diameter starts from a node and ends at some node in its subtree. Let’s say that there exists a node x such that the longest path starts from node x and goes into its subtree and ends at some node in the subtree itself. Let’s define this path length by dp1[x].
  • Case 2: Suppose the diameter or the longest path starts in the subtree of a node x, passes through it, and ends in its subtree. Let’s define this path by dp2[x].

If for all nodes x, we take a maximum of dp1[x], and dp2[x], then we will get the diameter of the tree. 
For the case-1, to find dp1[node], we need to find the maximum of all dp1[x], where x is the children of node. And dp1[node] will be equal to 1 + max(dp1[children1], dp1[children2], ..)
For the case-2, to find dp2[node], we need to find the two maximum of all dp1[x], where x is the children of node. And dp2[node] will be equal to 1 + max 2 of(dp1[children1], dp1[children2], ..) + max(dp1[children1], dp1[children2], ..). This will ensure a complete path passing through the current node into its subtree.
We can easily run a DFS and find the maximum of both dp1[node] and dp2[node] for every to get the diameter of the tree. 
Below is the implementation of the above approach:
 

C++




// C++ program to find diameter of a tree
// using DFS.
#include <bits/stdc++.h>
using namespace std;
 
int diameter = -1;
 
// Function to find the diameter of the tree
// using Dynamic Programming
int dfs(int node, int parent, int dp1[], int dp2[], list<int>* adj)
{
 
    // Store the first maximum and secondmax
    int firstmax = -1;
    int secondmax = -1;
 
    // Traverse for all children of node
    for (auto i = adj[node].begin(); i != adj[node].end(); ++i) {
        if (*i == parent)
            continue;
 
        // Call DFS function again
        dfs(*i, node, dp1, dp2, adj);
 
        // Find first max
        if (firstmax == -1) {
            firstmax = dp1[*i];
        }
        else if (dp1[*i] >= firstmax) // Secondmaximum
        {
            secondmax = firstmax;
            firstmax = dp1[*i];
        }
        else if (dp1[*i] > secondmax) // Find secondmaximum
        {
            secondmax = dp1[*i];
        }
    }
 
    // Base case for every node
    dp1[node] = 1;
    if (firstmax != -1) // Add
        dp1[node] += firstmax;
 
    // Find dp[2]
    if (secondmax != -1)
        dp2[node] = 1 + firstmax + secondmax;
 
    diameter = max(diameter, max(dp1[node], dp2[node]));
    // Return maximum of both
    return max(dp1[node], dp2[node]);
}
 
// Driver Code
int main()
{
    int n = 5;
 
    /* Constructed tree is
         1
        / \
        2 3
       / \
       4  5 */
    list<int>* adj = new list<int>[n + 1];
 
    /*create undirected edges */
    adj[1].push_back(2);
    adj[2].push_back(1);
    adj[1].push_back(3);
    adj[3].push_back(1);
    adj[2].push_back(4);
    adj[4].push_back(2);
    adj[2].push_back(5);
    adj[5].push_back(2);
 
    int dp1[n + 1], dp2[n + 1];
    memset(dp1, 0, sizeof dp1);
    memset(dp2, 0, sizeof dp2);
 
    // Find diameter by calling function
    dfs(1, 1, dp1, dp2, adj)
    cout << "Diameter of the given tree is "
         << diameter << endl;
 
    return 0;
}


Java




// Java program to find diameter of a tree using DFS.
import java.util.*;
public class Main
{
    // Function to find the diameter of the tree
    // using Dynamic Programming
    static int dfs(int node, int parent, int[] dp1, int[] dp2, Vector<Vector<Integer>> adj)
    {
   
        // Store the first maximum and secondmax
        int firstmax = -1;
        int secondmax = -1;
   
        // Traverse for all children of node
        for (int i = 0; i < adj.get(node).size(); ++i) {
            if (adj.get(node).get(i) == parent)
                continue;
   
            // Call DFS function again
            dfs(adj.get(node).get(i), node, dp1, dp2, adj);
   
            // Find first max
            if (firstmax == -1) {
                firstmax = dp1[adj.get(node).get(i)];
            }
            // Secondmaximum
            else if (dp1[adj.get(node).get(i)] >= firstmax)
            {
                secondmax = firstmax;
                firstmax = dp1[adj.get(node).get(i)];
            }
            // Find secondmaximum
            else if (dp1[adj.get(node).get(i)] > secondmax)
            {
                secondmax = dp1[adj.get(node).get(i)];
            }
        }
   
        // Base case for every node
        dp1[node] = 1;
        if (firstmax != -1) // Add
            dp1[node] += firstmax;
   
        // Find dp[2]
        if (secondmax != -1)
            dp2[node] = 1 + firstmax + secondmax;
   
        // Return maximum of both
        return Math.max(dp1[node], dp2[node]);
    }
     
    public static void main(String[] args) {
        int n = 5;
   
        /* Constructed tree is
             1
            / \
            2 3
           / \
           4  5 */
        Vector<Vector<Integer>> adj = new Vector<Vector<Integer>>();
          
        for(int i = 0; i < n + 1; i++)
        {
            adj.add(new Vector<Integer>());
        }
       
        /*create undirected edges */
        adj.get(1).add(2);
        adj.get(2).add(1);
        adj.get(1).add(3);
        adj.get(3).add(1);
        adj.get(2).add(4);
        adj.get(4).add(2);
        adj.get(2).add(5);
        adj.get(5).add(2);
       
        int[] dp1 = new int[n + 1];
        int[] dp2 = new int[n + 1];
          
        for(int i = 0; i < n + 1; i++)
        {
            dp1[i] = 0;
            dp2[i] = 0;
        }
       
        // Find diameter by calling function
        System.out.println("Diameter of the given tree is "
             + dfs(1, 1, dp1, dp2, adj));
    }
}
 
// This code is contributed by divyeshrabadiya07.


Python3




# Python3 program to find diameter
# of a tree using DFS.
 
# Function to find the diameter of the
# tree using Dynamic Programming
def dfs(node, parent, dp1, dp2, adj):
 
    # Store the first maximum and secondmax
    firstmax, secondmax = -1, -1
 
    # Traverse for all children of node
    for i in adj[node]:
        if i == parent:
            continue
 
        # Call DFS function again
        dfs(i, node, dp1, dp2, adj)
 
        # Find first max
        if firstmax == -1:
            firstmax = dp1[i]
         
        elif dp1[i] >= firstmax: # Secondmaximum
            secondmax = firstmax
            firstmax = dp1[i]
         
        elif dp1[i] > secondmax: # Find secondmaximum
            secondmax = dp1[i]
 
    # Base case for every node
    dp1[node] = 1
    if firstmax != -1: # Add
        dp1[node] += firstmax
 
    # Find dp[2]
    if secondmax != -1:
        dp2[node] = 1 + firstmax + secondmax
    diameter = max(diameter, max(dp1[node], dp2[node]));
    # Return maximum of both
    return max(dp1[node], dp2[node])
 
# Driver Code
if __name__ == "__main__":
 
    n, diameter = 5, -1
 
    adj = [[] for i in range(n + 1)]
     
    # create undirected edges
    adj[1].append(2)
    adj[2].append(1)
    adj[1].append(3)
    adj[3].append(1)
    adj[2].append(4)
    adj[4].append(2)
    adj[2].append(5)
    adj[5].append(2)
 
    dp1 = [0] * (n + 1)
    dp2 = [0] * (n + 1)
     
    # Find diameter by calling function
    dfs(1, 1, dp1, dp2, adj)
    print("Diameter of the given tree is",
                diameter )
 
# This code is contributed by Rituraj Jain


C#




// C# program to find diameter of a tree using DFS.
using System;
using System.Collections.Generic;
class GFG {
    
    // Function to find the diameter of the tree
    // using Dynamic Programming
    static int dfs(int node, int parent, int[] dp1, int[] dp2, List<List<int>> adj)
    {
  
        // Store the first maximum and secondmax
        int firstmax = -1;
        int secondmax = -1;
  
        // Traverse for all children of node
        for (int i = 0; i < adj[node].Count; ++i) {
            if (adj[node][i] == parent)
                continue;
  
            // Call DFS function again
            dfs(adj[node][i], node, dp1, dp2, adj);
  
            // Find first max
            if (firstmax == -1) {
                firstmax = dp1[adj[node][i]];
            }
            // Secondmaximum
            else if (dp1[adj[node][i]] >= firstmax)
            {
                secondmax = firstmax;
                firstmax = dp1[adj[node][i]];
            }
            // Find secondmaximum
            else if (dp1[adj[node][i]] > secondmax)
            {
                secondmax = dp1[adj[node][i]];
            }
        }
  
        // Base case for every node
        dp1[node] = 1;
        if (firstmax != -1) // Add
            dp1[node] += firstmax;
  
        // Find dp[2]
        if (secondmax != -1)
            dp2[node] = 1 + firstmax + secondmax;
         
        // diameter = Math.Max(diameter, Math.Max(dp1[node], dp2[node]));
        // Return maximum of both
        return Math.Max(dp1[node], dp2[node]);
    }
 
  static void Main() {
    int n = 5;
  
    /* Constructed tree is
         1
        / \
        2 3
       / \
       4  5 */
    List<List<int>> adj = new List<List<int>>();
     
    for(int i = 0; i < n + 1; i++)
    {
        adj.Add(new List<int>());
    }
  
    /*create undirected edges */
    adj[1].Add(2);
    adj[2].Add(1);
    adj[1].Add(3);
    adj[3].Add(1);
    adj[2].Add(4);
    adj[4].Add(2);
    adj[2].Add(5);
    adj[5].Add(2);
  
    int[] dp1 = new int[n + 1];
    int[] dp2 = new int[n + 1];
     
    for(int i = 0; i < n + 1; i++)
    {
        dp1[i] = 0;
        dp2[i] = 0;
    }
  
    // Find diameter by calling function
     
    Console.WriteLine("Diameter of the given tree is "
         + dfs(1, 1, dp1, dp2, adj));
  }
}
 
// This code is contributed by decode2207.


Javascript




<script>
 
    // JavaScript program to find diameter of a tree using DFS.
     
    let diameter = -1;
   
    // Function to find the diameter of the tree
    // using Dynamic Programming
    function dfs(node, parent, dp1, dp2, adj)
    {
 
        // Store the first maximum and secondmax
        let firstmax = -1;
        let secondmax = -1;
 
        // Traverse for all children of node
        for (let i = 0; i < adj[node].length; ++i) {
            if (adj[node][i] == parent)
                continue;
 
            // Call DFS function again
            dfs(adj[node][i], node, dp1, dp2, adj);
 
            // Find first max
            if (firstmax == -1) {
                firstmax = dp1[adj[node][i]];
            }
            // Secondmaximum
            else if (dp1[adj[node][i]] >= firstmax)
            {
                secondmax = firstmax;
                firstmax = dp1[adj[node][i]];
            }
            // Find secondmaximum
            else if (dp1[adj[node][i]] > secondmax)
            {
                secondmax = dp1[adj[node][i]];
            }
        }
 
        // Base case for every node
        dp1[node] = 1;
        if (firstmax != -1) // Add
            dp1[node] += firstmax;
 
        // Find dp[2]
        if (secondmax != -1)
            dp2[node] = 1 + firstmax + secondmax;
        diameter = Math.max(diameter, Math.max(dp1[node], dp2[node]));
        // Return maximum of both
        return Math.max(dp1[node], dp2[node]);
    }
     
    let n = 5;
   
    /* Constructed tree is
         1
        / \
        2 3
       / \
       4  5 */
    let adj = new Array(n + 1);
    for(let i = 0; i < n + 1; i++)
    {
        adj[i] = [];
    }
   
    /*create undirected edges */
    adj[1].push(2);
    adj[2].push(1);
    adj[1].push(3);
    adj[3].push(1);
    adj[2].push(4);
    adj[4].push(2);
    adj[2].push(5);
    adj[5].push(2);
   
    let dp1 = new Array(n + 1);
    let dp2 = new Array(n + 1);
    dp1.fill(0);
    dp2.fill(0);
   
    // Find diameter by calling function
    dfs(1, 1, dp1, dp2, adj)
 
    document.write("Diameter of the given tree is "
         + diameter);
 
</script>


Output: 

Diameter of the given tree is 4

 

Time Complexity: O(n), as we are using recursion to traverse n times, where n is the total number of nodes in the tree.

Auxiliary Space: O(n), as we are using extra space for the dp arrays.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments