In numerical analysis and linear algebra, LU decomposition (where ‘LU’ stands for ‘lower upper’, and also called LU factorization) factors a matrix as the product of a lower triangular matrix and an upper triangular matrix. Computers usually solve square systems of linear equations using the LU decomposition, and it is also a key step when inverting a matrix, or computing the determinant of a matrix. The LU decomposition was introduced by mathematician Tadeusz Banachiewicz in 1938.
Let A be a square matrix. An LU factorization refers to the factorization of A, with proper row and/or column orderings or permutations, into two factors, a lower triangular matrix L and an upper triangular matrix U, A=LU.
Doolittle Algorithm:
It is always possible to factor a square matrix into a lower triangular matrix and an upper triangular matrix. That is, [A] = [L][U]
Doolittle’s method provides an alternative way to factor A into an LU decomposition without going through the hassle of Gaussian Elimination.
For a general n×n matrix A, we assume that an LU decomposition exists, and write the form of L and U explicitly. We then systematically solve for the entries in L and U from the equations that result from the multiplications necessary for A=LU.
Terms of U matrix are given by:
And the terms for L matrix:
Example :
Input :
Output :
Implementation:
C++
// C++ Program to decompose a matrix into // lower and upper triangular matrix #include <bits/stdc++.h> using namespace std; const int MAX = 100; void luDecomposition( int mat[][MAX], int n) { int lower[n][n], upper[n][n]; memset (lower, 0, sizeof (lower)); memset (upper, 0, sizeof (upper)); // Decomposing matrix into Upper and Lower // triangular matrix for ( int i = 0; i < n; i++) { // Upper Triangular for ( int k = i; k < n; k++) { // Summation of L(i, j) * U(j, k) int sum = 0; for ( int j = 0; j < i; j++) sum += (lower[i][j] * upper[j][k]); // Evaluating U(i, k) upper[i][k] = mat[i][k] - sum; } // Lower Triangular for ( int k = i; k < n; k++) { if (i == k) lower[i][i] = 1; // Diagonal as 1 else { // Summation of L(k, j) * U(j, i) int sum = 0; for ( int j = 0; j < i; j++) sum += (lower[k][j] * upper[j][i]); // Evaluating L(k, i) lower[k][i] = (mat[k][i] - sum) / upper[i][i]; } } } // setw is for displaying nicely cout << setw(6) << " Lower Triangular" << setw(32) << "Upper Triangular" << endl; // Displaying the result : for ( int i = 0; i < n; i++) { // Lower for ( int j = 0; j < n; j++) cout << setw(6) << lower[i][j] << "\t" ; cout << "\t" ; // Upper for ( int j = 0; j < n; j++) cout << setw(6) << upper[i][j] << "\t" ; cout << endl; } } // Driver code int main() { int mat[][MAX] = { { 2, -1, -2 }, { -4, 6, 3 }, { -4, -2, 8 } }; luDecomposition(mat, 3); return 0; } |
Java
// Java Program to decompose a matrix into // lower and upper triangular matrix class GFG { static int MAX = 100 ; static String s = "" ; static void luDecomposition( int [][] mat, int n) { int [][] lower = new int [n][n]; int [][] upper = new int [n][n]; // Decomposing matrix into Upper and Lower // triangular matrix for ( int i = 0 ; i < n; i++) { // Upper Triangular for ( int k = i; k < n; k++) { // Summation of L(i, j) * U(j, k) int sum = 0 ; for ( int j = 0 ; j < i; j++) sum += (lower[i][j] * upper[j][k]); // Evaluating U(i, k) upper[i][k] = mat[i][k] - sum; } // Lower Triangular for ( int k = i; k < n; k++) { if (i == k) lower[i][i] = 1 ; // Diagonal as 1 else { // Summation of L(k, j) * U(j, i) int sum = 0 ; for ( int j = 0 ; j < i; j++) sum += (lower[k][j] * upper[j][i]); // Evaluating L(k, i) lower[k][i] = (mat[k][i] - sum) / upper[i][i]; } } } // setw is for displaying nicely System.out.println(setw( 2 ) + " Lower Triangular" + setw( 10 ) + "Upper Triangular" ); // Displaying the result : for ( int i = 0 ; i < n; i++) { // Lower for ( int j = 0 ; j < n; j++) System.out.print(setw( 4 ) + lower[i][j] + "\t" ); System.out.print( "\t" ); // Upper for ( int j = 0 ; j < n; j++) System.out.print(setw( 4 ) + upper[i][j] + "\t" ); System.out.print( "\n" ); } } static String setw( int noOfSpace) { s = "" ; for ( int i = 0 ; i < noOfSpace; i++) s += " " ; return s; } // Driver code public static void main(String arr[]) { int mat[][] = { { 2 , - 1 , - 2 }, { - 4 , 6 , 3 }, { - 4 , - 2 , 8 } }; luDecomposition(mat, 3 ); } } /* This code contributed by PrinciRaj1992 */ |
Python3
# Python3 Program to decompose # a matrix into lower and # upper triangular matrix MAX = 100 def luDecomposition(mat, n): lower = [[ 0 for x in range (n)] for y in range (n)] upper = [[ 0 for x in range (n)] for y in range (n)] # Decomposing matrix into Upper # and Lower triangular matrix for i in range (n): # Upper Triangular for k in range (i, n): # Summation of L(i, j) * U(j, k) sum = 0 for j in range (i): sum + = (lower[i][j] * upper[j][k]) # Evaluating U(i, k) upper[i][k] = mat[i][k] - sum # Lower Triangular for k in range (i, n): if (i = = k): lower[i][i] = 1 # Diagonal as 1 else : # Summation of L(k, j) * U(j, i) sum = 0 for j in range (i): sum + = (lower[k][j] * upper[j][i]) # Evaluating L(k, i) lower[k][i] = int ((mat[k][i] - sum ) / upper[i][i]) # setw is for displaying nicely print ( "Lower Triangular\t\tUpper Triangular" ) # Displaying the result : for i in range (n): # Lower for j in range (n): print (lower[i][j], end = "\t" ) print (" ", end=" \t") # Upper for j in range (n): print (upper[i][j], end = "\t" ) print ("") # Driver code mat = [[ 2 , - 1 , - 2 ], [ - 4 , 6 , 3 ], [ - 4 , - 2 , 8 ]] luDecomposition(mat, 3 ) # This code is contributed by mits |
C#
// C# Program to decompose a matrix into // lower and upper triangular matrix using System; class GFG { static int MAX = 100; static String s = "" ; static void luDecomposition( int [, ] mat, int n) { int [, ] lower = new int [n, n]; int [, ] upper = new int [n, n]; // Decomposing matrix into Upper and Lower // triangular matrix for ( int i = 0; i < n; i++) { // Upper Triangular for ( int k = i; k < n; k++) { // Summation of L(i, j) * U(j, k) int sum = 0; for ( int j = 0; j < i; j++) sum += (lower[i, j] * upper[j, k]); // Evaluating U(i, k) upper[i, k] = mat[i, k] - sum; } // Lower Triangular for ( int k = i; k < n; k++) { if (i == k) lower[i, i] = 1; // Diagonal as 1 else { // Summation of L(k, j) * U(j, i) int sum = 0; for ( int j = 0; j < i; j++) sum += (lower[k, j] * upper[j, i]); // Evaluating L(k, i) lower[k, i] = (mat[k, i] - sum) / upper[i, i]; } } } // setw is for displaying nicely Console.WriteLine(setw(2) + " Lower Triangular" + setw(10) + "Upper Triangular" ); // Displaying the result : for ( int i = 0; i < n; i++) { // Lower for ( int j = 0; j < n; j++) Console.Write(setw(4) + lower[i, j] + "\t" ); Console.Write( "\t" ); // Upper for ( int j = 0; j < n; j++) Console.Write(setw(4) + upper[i, j] + "\t" ); Console.Write( "\n" ); } } static String setw( int noOfSpace) { s = "" ; for ( int i = 0; i < noOfSpace; i++) s += " " ; return s; } // Driver code public static void Main(String[] arr) { int [, ] mat = { { 2, -1, -2 }, { -4, 6, 3 }, { -4, -2, 8 } }; luDecomposition(mat, 3); } } // This code is contributed by Princi Singh |
PHP
<?php // PHP Program to decompose // a matrix into lower and // upper triangular matrix $MAX = 100; function luDecomposition( $mat , $n ) { $lower ; $upper ; for ( $i = 0; $i < $n ; $i ++) for ( $j = 0; $j < $n ; $j ++) { $lower [ $i ][ $j ]= 0; $upper [ $i ][ $j ]= 0; } // Decomposing matrix // into Upper and Lower // triangular matrix for ( $i = 0; $i < $n ; $i ++) { // Upper Triangular for ( $k = $i ; $k < $n ; $k ++) { // Summation of // L(i, j) * U(j, k) $sum = 0; for ( $j = 0; $j < $i ; $j ++) $sum += ( $lower [ $i ][ $j ] * $upper [ $j ][ $k ]); // Evaluating U(i, k) $upper [ $i ][ $k ] = $mat [ $i ][ $k ] - $sum ; } // Lower Triangular for ( $k = $i ; $k < $n ; $k ++) { if ( $i == $k ) $lower [ $i ][ $i ] = 1; // Diagonal as 1 else { // Summation of L(k, j) * U(j, i) $sum = 0; for ( $j = 0; $j < $i ; $j ++) $sum += ( $lower [ $k ][ $j ] * $upper [ $j ][ $i ]); // Evaluating L(k, i) $lower [ $k ][ $i ] = (int)(( $mat [ $k ][ $i ] - $sum ) / $upper [ $i ][ $i ]); } } } // setw is for // displaying nicely echo "\t\tLower Triangular" ; echo "\t\t\tUpper Triangular\n" ; // Displaying the result : for ( $i = 0; $i < $n ; $i ++) { // Lower for ( $j = 0; $j < $n ; $j ++) echo "\t" . $lower [ $i ][ $j ] . "\t" ; echo "\t" ; // Upper for ( $j = 0; $j < $n ; $j ++) echo $upper [ $i ][ $j ] . "\t" ; echo "\n" ; } } // Driver code $mat = array ( array (2, -1, -2), array (-4, 6, 3), array (-4, -2, 8)); luDecomposition( $mat , 3); // This code is contributed by mits ?> |
Javascript
<script> // Javascript Program to decompose a matrix // into lower and upper triangular matrix // function MAX = 100; var s = "" ; function luDecomposition(mat, n) { var lower = Array(n).fill(0).map( x => Array(n).fill(0)); var upper = Array(n).fill(0).map( x => Array(n).fill(0)); // Decomposing matrix into Upper and // Lower triangular matrix for ( var i = 0; i < n; i++) { // Upper Triangular for ( var k = i; k < n; k++) { // Summation of L(i, j) * U(j, k) var sum = 0; for ( var j = 0; j < i; j++) sum += (lower[i][j] * upper[j][k]); // Evaluating U(i, k) upper[i][k] = mat[i][k] - sum; } // Lower Triangular for ( var k = i; k < n; k++) { if (i == k) // Diagonal as 1 lower[i][i] = 1; else { // Summation of L(k, j) * U(j, i) var sum = 0; for ( var j = 0; j < i; j++) sum += (lower[k][j] * upper[j][i]); // Evaluating L(k, i) lower[k][i] = parseInt((mat[k][i] - sum) / upper[i][i]); } } } // Setw is for displaying nicely document.write(setw(2) + "Lower Triangular" + setw(10) + "Upper Triangular<br>" ); // Displaying the result : for ( var i = 0; i < n; i++) { // Lower for ( var j = 0; j < n; j++) document.write(setw(4) + lower[i][j] + "\t" ); document.write(setw(10)); // Upper for ( var j = 0; j < n; j++) document.write(setw(4) + upper[i][j] + "\t" ); document.write( "<br>" ); } } function setw(noOfSpace) { var s = "" ; for (i = 0; i < noOfSpace; i++) s += " " ; return s; } // Driver code var mat = [ [ 2, -1, -2 ], [ -4, 6, 3 ], [ -4, -2, 8 ] ]; luDecomposition(mat, 3); // This code is contributed by Amit Katiyar </script> |
Lower Triangular Upper Triangular 1 0 0 2 -1 -2 -2 1 0 0 4 -1 -2 -1 1 0 0 3
This article is contributed by Shubham Rana. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!