Given N sweets, which can be of many different types, and k customers, one customer won’t make the same type of sweet more than 2 pieces, the task is to find if it is possible to distribute all, then print “Yes” or otherwise “No”.
Given an array, arr[] represents an array of sweets. arr[i] is type of sweet.
Examples:
Input : arr[] = {1, 1, 2, 3, 1},
k = 2;
Output : Yes
There are three pieces of sweet type 1,
one piece of type 2 and one piece of
type 3. Two customers can distribute
sweets under given constraints.
Input : arr[] = {2, 3, 3, 5, 3, 3},
k = 2;
Output : Yes
Input : arr[] = {2, 3, 3, 5, 3, 3, 3},
k = 2;
Output : No
Method 1:
- Traverse array for each element.
- Count occurrences of each element in the array
- Check if the result of each element must be less than or equal to 2*k.
Implementation:
C++
// C++ program for above implementation#include <bits/stdc++.h>using namespace std;// Function to check occurrence of each elementbool checkCount(int arr[], int n, int k){ int count; // Start traversing the elements for (int i = 0; i < n; i++) { // Count occurrences of current element count = 0; for (int j = 0; j < n; j++) { if (arr[j] == arr[i]) count++; // If count of any element is greater // than 2*k then return false if (count > 2 * k) return false; } } return true;}// Drivers codeint main(){ int arr[] = { 1, 1, 2, 3, 1 }; int n = sizeof(arr) / sizeof(arr[0]); int k = 2; checkCount(arr, n, k) ? cout << "Yes" : cout << "No"; return 0;} |
Java
// java program for above implementationimport java.io.*;public class GFG { // Function to check occurrence of // each element static boolean checkCount(int []arr, int n, int k) { int count; // Start traversing the elements for (int i = 0; i < n; i++) { // Count occurrences of // current element count = 0; for (int j = 0; j < n; j++) { if (arr[j] == arr[i]) count++; // If count of any element // is greater than 2*k then // return false if (count > 2 * k) return false; } } return true; } // Drivers code static public void main (String[] args) { int []arr = { 1, 1, 2, 3, 1 }; int n = arr.length; int k = 2; if(checkCount(arr, n, k)) System.out.println("Yes"); else System.out.println("No"); }}// This code is contributed by vt_m. |
Python3
# Python 3 program for above implementation # Function to check occurrence # of each element def checkCount(arr, n, k): # Start traversing the elements for i in range(n): # Count occurrences of # current element count = 0 for j in range(n): if arr[j] == arr[i]: count += 1 # If count of any element is greater # than 2*k then return false if count > 2 * k: return False return True# Driver codearr = [1, 1, 2, 3, 1]n = len(arr)k = 2if checkCount(arr, n, k) == True: print("Yes")else: print("No")# This code is contributed by Shrikant13 |
C#
// C# program for above implementationusing System;public class GFG { // Function to check occurrence // of each element static bool checkCount(int []arr, int n, int k) { int count; // Start traversing the elements for (int i = 0; i < n; i++) { // Count occurrences of // current element count = 0; for (int j = 0; j < n; j++) { if (arr[j] == arr[i]) count++; // If count of any element // is greater than 2*k then // return false if (count > 2 * k) return false; } } return true; } // Drivers code static public void Main () { int []arr = { 1, 1, 2, 3, 1 }; int n = arr.Length; int k = 2; if(checkCount(arr, n, k)) Console.WriteLine("Yes"); else Console.WriteLine("No"); }}// This code is contributed by vt_m. |
PHP
<?php// PHP program for above implementation// Function to check occurrence// of each elementfunction checkCount($arr, $n, $k){ $count; // Start traversing the elements for($i = 0; $i < $n; $i++) { // Count occurrences of // current element $count = 0; for($j = 0; $j < $n; $j++) { if ($arr[$j] == $arr[$i]) $count++; // If count of any element // is greater than 2*k then // return false if ($count > 2 * $k) return false; } } return true;} // Driver Code $arr = array(1, 1, 2, 3, 1); $n =count($arr); $k = 2; if(checkCount($arr, $n, $k)) echo "Yes"; else echo "No";// This code is contributed by anuj_67.?> |
Javascript
<script> // Javascript program for above implementation // Function to check occurrence // of each element function checkCount(arr, n, k) { let count; // Start traversing the elements for (let i = 0; i < n; i++) { // Count occurrences of // current element count = 0; for (let j = 0; j < n; j++) { if (arr[j] == arr[i]) count++; // If count of any element // is greater than 2*k then // return false if (count > 2 * k) return false; } } return true; } let arr = [ 1, 1, 2, 3, 1 ]; let n = arr.length; let k = 2; if(checkCount(arr, n, k)) document.write("Yes"); else document.write("No"); </script> |
Yes
Time Complexity: O(n^2)
Auxiliary Space: O(1)
Method 2:
- Maintain a hash for 32 different type of sweets.
- Traverse an array and check for every arr[i]
hash[arr[i]] <= 2*k.
Implementation:
C++
// C++ program for above implementation#include <bits/stdc++.h>using namespace std;// Function to check hash array// corresponding to the given arraybool checkCount(int arr[], int n, int k){ unordered_map<int, int> hash; // Maintain a hash for (int i = 0; i < n; i++) hash[arr[i]]++; // Check for each value in hash for (auto x : hash) if (x.second > 2 * k) return false; return true;}// Drivers codeint main(){ int arr[] = { 1, 1, 2, 3, 1 }; int n = sizeof(arr) / sizeof(arr[0]); int k = 2; checkCount(arr, n, k) ? cout << "Yes" : cout << "No"; return 0;} |
Java
// Java program for above implementationimport java.util.HashMap;import java.util.Map;class GfG{ // Function to check hash array // corresponding to the given array static boolean checkCount(int arr[], int n, int k) { HashMap <Integer, Integer> hash = new HashMap<>(); // Maintain a hash for (int i = 0; i < n; i++) { if (!hash.containsKey(arr[i])) hash.put(arr[i], 0); hash.put(arr[i], hash.get(arr[i]) + 1); } // Check for each value in hash for (Map.Entry x : hash.entrySet()) if ((int)x.getValue() > 2 * k) return false; return true; } // Driver code public static void main(String []args) { int arr[] = { 1, 1, 2, 3, 1 }; int n = arr.length; int k = 2; if (checkCount(arr, n, k)) System.out.println("Yes"); else System.out.println("No"); }}// This code is contributed by Rituraj Jain |
Python3
# Python3 program for above implementation from collections import defaultdict# Function to check hash array # corresponding to the given array def checkCount(arr, n, k): mp = defaultdict(lambda:0) # Insert all array elements in # hash table Maintain a hash for i in range(n): mp[arr[i]] += 1 # Check for each value in hash for key, values in mp.items(): if values > 2 * k: return False return True# Driver codearr = [ 1, 1, 2, 3, 1 ]n = len(arr)k = 2if checkCount(arr, n, k) == True: print("Yes")else: print("No")# This code is contributed by Shrikant13 |
C#
// C# program for above implementationusing System; using System.Collections.Generic;class GfG{ // Function to check hash array // corresponding to the given array static Boolean checkCount(int []arr, int n, int k) { Dictionary<int,int> hash = new Dictionary<int,int>(); // Maintain a hash for (int i = 0; i < n; i++) { if(hash.ContainsKey(arr[i])) { var val = hash[arr[i]]; hash.Remove(arr[i]); hash.Add(arr[i], val + 1); } else { hash.Add(arr[i], 0); } } // Check for each value in hash foreach(KeyValuePair<int, int> x in hash) if ((int)x.Value > 2 * k) return false; return true; } // Driver code public static void Main(String []args) { int []arr = { 1, 1, 2, 3, 1 }; int n = arr.Length; int k = 2; if (checkCount(arr, n, k)) Console.WriteLine("Yes"); else Console.WriteLine("No"); }}/* This code is contributed by PrinciRaj1992 */ |
Javascript
// Function to check hash array// corresponding to the given arrayfunction checkCount(arr, n, k){ var hash = new Map(); // Maintain a hash for (var i=0; i < n; i++) { if (!hash.has(arr[i])) { hash.set(arr[i],0); } hash.set(arr[i],hash.get(arr[i]) + 1); } // Check for each value in hash for (let [key, value] of hash) { if (value > 2 * k) { return false; } return true; }}// Driver codevar arr = [1, 1, 2, 3, 1];var n = arr.length;var k = 2;if (checkCount(arr, n, k)){ console.log("Yes");}else{ console.log("No");}// This code is contributed by Aarti_Rathi |
Yes
Time Complexity: O(n)
Auxiliary Space: O(n)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!
