Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIDistinct adjacent elements in a binary array

Distinct adjacent elements in a binary array

Given a binary array arr[] of 1’s and 0’s of length N. The task is to find the number of elements that are different with respect to their neighbors. 
Note: At least one of the neighbors should be distinct.

Examples:

Input : N = 4 , arr=[1, 0, 1, 1] 
Output :
arr[0]=1 is distinct since it’s neighbor arr[1]=0 is different. 
arr[1]=0 is also distinct, as it has two different neighbors i.e, arr[2]=1 & arr[0]=1. 
arr[2]=1 has same neighbor in arr[3]=1 but has different neighbor in arr[1]=0. So it’s distinct. 
But arr[3]=1 is not distinct as it’s neighbor arr[2]=1 is the same. 
So total distinct elements are 1+1+1+0=3

Input : N = 2 , arr=[1, 1] 
Output :

Approach: 

  • Run a loop for all the elements of the list and compare every element with its previous and next neighbors. Increment count by 1 if the element is distinct.
  • The first element has to be compared only with its next neighbor and similarly the last element has to be compared only with its previous element.
  • The remaining elements have two neighbors. If anyone of two neighbors is different then it is considered distinct.

Below is the implementation of the above approach: 

C++




// C++ implementation of
// the above approach
#include <bits/stdc++.h>
 
using namespace std;
 
int distinct(int arr[], int n)
{
    int count = 0;
 
    // if array has only one element, return 1
    if (n == 1)
        return 1;
 
    for ( int i = 0; i < n - 1; i++)
    {
  
        // For first element compare
        // with only next element
        if(i == 0)
        {
            if(arr[i] != arr[i + 1])
                count += 1;
        }
 
        // For remaining elements compare with
        // both prev and next elements
        else
        {
            if(arr[i] != arr[i + 1] ||
               arr[i] != arr[i - 1])
                count += 1;
        }
    }
     
    // For last element compare
    // with only prev element
    if(arr[n - 1] != arr[n - 2])
        count += 1;
 
    return count;
}
 
// Driver code
int main()
{
    int arr[] = {0, 0, 0, 0, 0, 1, 0};
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << distinct(arr, n);
     
    return 0;
}


Java




// Java implementation of
// the above approach
class GFG
{
static int distinct(int []arr, int n)
{
    int count = 0;
 
    // if array has only one element,
    // return 1
    if (n == 1)
        return 1;
 
    for (int i = 0; i < n - 1; i++)
    {
 
        // For first element compare
        // with only next element
        if(i == 0)
        {
            if(arr[i] != arr[i + 1])
                count += 1;
        }
 
        // For remaining elements compare with
        // both prev and next elements
        else
        {
            if(arr[i] != arr[i + 1] ||
               arr[i] != arr[i - 1])
                count += 1;
        }
    }
     
    // For last element compare
    // with only prev element
    if(arr[n - 1] != arr[n - 2])
        count += 1;
 
    return count;
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = {0, 0, 0, 0, 0, 1, 0};
    int n = arr.length;
    System.out.println(distinct(arr, n));
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 implementation of
# the above approach
def distinct(arr):
    count = 0
 
    # if array has only one element, return 1
    if len(arr) == 1:
        return 1
     
    for i in range(0, len(arr) - 1):
 
        # For first element compare
        # with only next element
        if(i == 0):
            if(arr[i] != arr[i + 1]):
                count += 1
 
        # For remaining elements compare with
        # both prev and next elements
        elif(i > 0 & i < len(arr) - 1):
            if(arr[i] != arr[i + 1] or
               arr[i] != arr[i - 1]):
                count += 1
 
    # For last element compare
    # with only prev element
    if(arr[len(arr) - 1] != arr[len(arr) - 2]):
        count += 1
    return count
 
# Driver code
arr = [0, 0, 0, 0, 0, 1, 0]
 
print(distinct(arr))
 
# This code is contributed by Mohit Kumar


C#




// C# implementation of
// the above approach
using System;
     
class GFG
{
static int distinct(int []arr, int n)
{
    int count = 0;
 
    // if array has only one element,
    // return 1
    if (n == 1)
        return 1;
 
    for (int i = 0; i < n - 1; i++)
    {
 
        // For first element compare
        // with only next element
        if(i == 0)
        {
            if(arr[i] != arr[i + 1])
                count += 1;
        }
 
        // For remaining elements compare with
        // both prev and next elements
        else
        {
            if(arr[i] != arr[i + 1] ||
               arr[i] != arr[i - 1])
                count += 1;
        }
    }
     
    // For last element compare
    // with only prev element
    if(arr[n - 1] != arr[n - 2])
        count += 1;
 
    return count;
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr = {0, 0, 0, 0, 0, 1, 0};
    int n = arr.Length;
    Console.WriteLine(distinct(arr, n));
}
}
 
// This code is contributed by Princi Singh


Javascript




<script>
 
// JavaScript implementation of
// the above approach
 
function distinct(arr, n)
{
    let count = 0;
 
    // if array has only one element, return 1
    if (n == 1)
        return 1;
 
    for ( let i = 0; i < n - 1; i++)
    {
  
        // For first element compare
        // with only next element
        if(i == 0)
        {
            if(arr[i] != arr[i + 1])
                count += 1;
        }
 
        // For remaining elements compare with
        // both prev and next elements
        else
        {
            if(arr[i] != arr[i + 1] ||
               arr[i] != arr[i - 1])
                count += 1;
        }
    }
     
    // For last element compare
    // with only prev element
    if(arr[n - 1] != arr[n - 2])
        count += 1;
 
    return count;
}
 
// Driver code
    let arr = [0, 0, 0, 0, 0, 1, 0];
    let n = arr.length;
    document.write(distinct(arr, n));
 
</script>


Output

3

Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments