Saturday, January 11, 2025
Google search engine
HomeLanguagesDisplay all the Sundays of given year using Pandas in Python

Display all the Sundays of given year using Pandas in Python

Let’s see how to display all the Sundays of a given year using Pandas. We will be using the date_range() function of the Pandas module.

Algorithm :

  1. Import the pandas module.
  2. Fetch all the Sundays using the date_range() function, the parameters are :
    • In order to display Sundays of 2020, start parameter is set as 2020-01-01.
    • The parameter periods is set to 52 as there are approximately 52 weeks in a year.
    • The parameter freq is set to W-SUN where W refers to weekly and SUN refers to Sunday.
  3. Print the fetched DateTimeIndex object.




# importing the module
import pandas as pd
  
# target year
year = "2020"
  
# instantiating the parameters
start = year + "-01-01"
periods = 52
freq = "W-SUN"
  
# fetching the Sundays
sundays = pd.date_range(start = start,
                        periods = periods,
                        freq = freq)
  
# printing the Sundays                        
print(sundays)


Output :

DatetimeIndex([‘2020-01-05’, ‘2020-01-12’, ‘2020-01-19’, ‘2020-01-26’,
‘2020-02-02’, ‘2020-02-09’, ‘2020-02-16’, ‘2020-02-23’,
‘2020-03-01’, ‘2020-03-08’, ‘2020-03-15’, ‘2020-03-22’,
‘2020-03-29’, ‘2020-04-05’, ‘2020-04-12’, ‘2020-04-19’,
‘2020-04-26’, ‘2020-05-03’, ‘2020-05-10’, ‘2020-05-17’,
‘2020-05-24’, ‘2020-05-31’, ‘2020-06-07’, ‘2020-06-14’,
‘2020-06-21’, ‘2020-06-28’, ‘2020-07-05’, ‘2020-07-12’,
‘2020-07-19’, ‘2020-07-26’, ‘2020-08-02’, ‘2020-08-09’,
‘2020-08-16’, ‘2020-08-23’, ‘2020-08-30’, ‘2020-09-06’,
‘2020-09-13’, ‘2020-09-20’, ‘2020-09-27’, ‘2020-10-04’,
‘2020-10-11’, ‘2020-10-18’, ‘2020-10-25’, ‘2020-11-01’,
‘2020-11-08’, ‘2020-11-15’, ‘2020-11-22’, ‘2020-11-29’,
‘2020-12-06’, ‘2020-12-13’, ‘2020-12-20’, ‘2020-12-27′],
dtype=’datetime64[ns]’, freq=’W-SUN’)

If we want to fetch any other day instead of Sunday, we can tweak the above program by changing the parameter freq to the desired day.




# importing the module
import pandas as pd
  
# target year
year = "2020"
  
# day to be fetched
day = "MON"
  
# instantiating the parameters
start = year + "-01-01"
periods = 52
freq = "W-" + day
  
# fetching the days
days = pd.date_range(start = start,
                     periods = periods,
                     freq = freq)
  
# printing the days                        
print(days)


Output :

DatetimeIndex([‘2020-01-06’, ‘2020-01-13’, ‘2020-01-20’, ‘2020-01-27’,
‘2020-02-03’, ‘2020-02-10’, ‘2020-02-17’, ‘2020-02-24’,
‘2020-03-02’, ‘2020-03-09’, ‘2020-03-16’, ‘2020-03-23’,
‘2020-03-30’, ‘2020-04-06’, ‘2020-04-13’, ‘2020-04-20’,
‘2020-04-27’, ‘2020-05-04’, ‘2020-05-11’, ‘2020-05-18’,
‘2020-05-25’, ‘2020-06-01’, ‘2020-06-08’, ‘2020-06-15’,
‘2020-06-22’, ‘2020-06-29’, ‘2020-07-06’, ‘2020-07-13’,
‘2020-07-20’, ‘2020-07-27’, ‘2020-08-03’, ‘2020-08-10’,
‘2020-08-17’, ‘2020-08-24’, ‘2020-08-31’, ‘2020-09-07’,
‘2020-09-14’, ‘2020-09-21’, ‘2020-09-28’, ‘2020-10-05’,
‘2020-10-12’, ‘2020-10-19’, ‘2020-10-26’, ‘2020-11-02’,
‘2020-11-09’, ‘2020-11-16’, ‘2020-11-23’, ‘2020-11-30’,
‘2020-12-07’, ‘2020-12-14’, ‘2020-12-21’, ‘2020-12-28′],
dtype=’datetime64[ns]’, freq=’W-MON’)

We may convert the DateTimeIndex object to a Series object to get a list of the days to be fetched.




# importing the module
import pandas as pd
  
# target year
year = "2020"
  
# day to be fetched
day = "WED"
  
# instantiating the parameters
start = year + "-01-01"
periods = 52
freq = "W-" + day
  
# fetching the days
days = pd.Series(pd.date_range(start = start,
                               periods = periods,
                               freq = freq))
  
# printing the days                        
print(days)


Output :

0    2020-01-01
1    2020-01-08
2    2020-01-15
3    2020-01-22
4    2020-01-29
5    2020-02-05
6    2020-02-12
7    2020-02-19
8    2020-02-26
9    2020-03-04
10   2020-03-11
11   2020-03-18
12   2020-03-25
13   2020-04-01
14   2020-04-08
15   2020-04-15
16   2020-04-22
17   2020-04-29
18   2020-05-06
19   2020-05-13
20   2020-05-20
21   2020-05-27
22   2020-06-03
23   2020-06-10
24   2020-06-17
25   2020-06-24
26   2020-07-01
27   2020-07-08
28   2020-07-15
29   2020-07-22
30   2020-07-29
31   2020-08-05
32   2020-08-12
33   2020-08-19
34   2020-08-26
35   2020-09-02
36   2020-09-09
37   2020-09-16
38   2020-09-23
39   2020-09-30
40   2020-10-07
41   2020-10-14
42   2020-10-21
43   2020-10-28
44   2020-11-04
45   2020-11-11
46   2020-11-18
47   2020-11-25
48   2020-12-02
49   2020-12-09
50   2020-12-16
51   2020-12-23
dtype: datetime64[ns]

Last Updated :
10 Jul, 2020
Like Article
Save Article

<!–

–>

Similar Reads
Related Tutorials
Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments