Given an array arr[] and an integer K, the task is to find the absolute difference between the ceil of the total sum of the array divided by K and the sum of the ceil of every array element divided by K.
Examples:
Input: arr[] = {1, 2, 3, 4, 5, 6}, K = 4
Output: 2
Explanation: Sum of the array = 21. Ceil of ( Sum of the array ) / K = 6.
Sum of ceil of array elements divided by K = (1/4) + (2/4) + (3/4) + (4/4) + (5/4) + (6/4) = 1 + 1 + 1 + 1 + 2 + 2 = 8.
Therefore, absolute difference = 8 – 6 = 2.Input: arr[] = {1, 2, 3}, K = 2
Output: 1
Approach: Follow the steps below to solve the given problem:
- Initialize two variables, say totalSum and perElementSum, to store the total sum of the array and the sum of the ceil of every array element divided by K.
- Traverse the array and perform the following:
- Add the current element arr[i] to the totalSum.
- Add the ceil of the current element divided by K i.e., arr[i]/K.
- After the above steps print the absolute value of totalSum and perElementSum as the result.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find absolute difference // between array sum divided by x and // sum of ceil of array elements divided by x int ceilDifference( int arr[], int n, int x) { // Stores the total sum int totalSum = 0; // Stores the sum of ceil of // array elements divided by x int perElementSum = 0; // Traverse the array for ( int i = 0; i < n; i++) { // Adding each array element totalSum += arr[i]; // Add the value ceil of arr[i]/x perElementSum += ceil (( double )(arr[i]) / ( double )(x)); } // Find the ceil of the // total sum divided by x int totalCeilSum = ceil (( double )(totalSum) / ( double )(x)); // Return absolute difference return abs (perElementSum - totalCeilSum); } // Driver Code int main() { int arr[] = { 1, 2, 3, 4, 5, 6 }; int K = 4; int N = sizeof (arr) / sizeof (arr[0]); cout << ceilDifference(arr, N, K); return 0; } |
Java
// Java approach for the above approach public class GFG{ // Function to find absolute difference // between array sum divided by x and // sum of ceil of array elements divided by x static int ceilDifference( int arr[], int n, int x) { // Stores the total sum int totalSum = 0 ; // Stores the sum of ceil of // array elements divided by x int perElementSum = 0 ; // Traverse the array for ( int i = 0 ; i < n; i++) { // Adding each array element totalSum += arr[i]; // Add the value ceil of arr[i]/x perElementSum += Math.ceil(( double )(arr[i]) / ( double )(x)); } // Find the ceil of the // total sum divided by x int totalCeilSum = ( int ) Math.ceil(( double )(totalSum) / ( double )(x)); // Return absolute difference return Math.abs(perElementSum - totalCeilSum); } // Driver Code public static void main(String[] args) { int arr[] = { 1 , 2 , 3 , 4 , 5 , 6 }; int K = 4 ; int N = arr.length; System.out.println(ceilDifference(arr, N, K)); } } // This code is contributed by abhinavjain194 |
Python3
# Python3 program for the above approach from math import ceil # Function to find absolute difference # between array sum divided by x and # sum of ceil of array elements divided by x def ceilDifference(arr, n, x): # Stores the total sum totalSum = 0 # Stores the sum of ceil of # array elements divided by x perElementSum = 0 # Traverse the array for i in range (n): # Adding each array element totalSum + = arr[i] # Add the value ceil of arr[i]/x perElementSum + = ceil(arr[i] / x) # Find the ceil of the # total sum divided by x totalCeilSum = ceil(totalSum / x) # Return absolute difference return abs (perElementSum - totalCeilSum) # Driver Code if __name__ = = '__main__' : arr = [ 1 , 2 , 3 , 4 , 5 , 6 ] K = 4 N = len (arr) print (ceilDifference(arr, N, K)) # This code is contributed by mohit kumar 29. |
C#
// C# approach for the above approach using System; class GFG{ // Function to find absolute difference // between array sum divided by x and // sum of ceil of array elements divided by x static int ceilDifference( int [] arr, int n, int x) { // Stores the total sum int totalSum = 0; // Stores the sum of ceil of // array elements divided by x int perElementSum = 0; // Traverse the array for ( int i = 0; i < n; i++) { // Adding each array element totalSum += arr[i]; // Add the value ceil of arr[i]/x perElementSum += ( int )Math.Ceiling( ( double )(arr[i]) / ( double )(x)); } // Find the ceil of the // total sum divided by x int totalCeilSum = ( int )Math.Ceiling( ( double )(totalSum) / ( double )(x)); // Return absolute difference return Math.Abs(perElementSum - totalCeilSum); } // Driver Code public static void Main( string [] args) { int [] arr = { 1, 2, 3, 4, 5, 6 }; int K = 4; int N = arr.Length; Console.Write(ceilDifference(arr, N, K)); } } // This code is contributed by ukasp |
Javascript
<script> // Javascript approach for the above approach // Function to find absolute difference // between array sum divided by x and // sum of ceil of array elements divided by x function ceilDifference(arr , n, x) { // Stores the total sum var totalSum = 0; // Stores the sum of ceil of // array elements divided by x var perElementSum = 0; // Traverse the array for ( var i = 0; i < n; i++) { // Adding each array element totalSum += arr[i]; // Add the value ceil of arr[i]/x perElementSum += parseInt(Math.ceil((arr[i]) / (x))); } // Find the ceil of the // total sum divided by x var totalCeilSum = parseInt( Math.ceil((totalSum) / (x))); // Return absolute difference return Math.abs(perElementSum - totalCeilSum); } // Driver Code var arr = [ 1, 2, 3, 4, 5, 6 ]; var K = 4; var N = arr.length; document.write(ceilDifference(arr, N, K)); // This code contributed by shikhasingrajput </script> |
2
Time Complexity: O(N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!