Wednesday, July 3, 2024
HomeData ModellingData Structure & AlgorithmDiameter of a Binary Indexed Tree with N nodes

Diameter of a Binary Indexed Tree with N nodes

Given a Binary Indexed Tree with N nodes except root node 0 (Numbered from 1 to N), Find its diameter. 
Binary Indexed Tree is a tree where parent of a node number X = X – (X & (X – 1)) i.e. last bit is unset in X. The diameter of a tree is the longest simple path between any two leaves. 
Examples: 
 

Input: N = 12 
Output:
Explanation: Path from node 7 to node 11.
 

BIT with n  = 11

Input : n = 15 
Output : 7 
 

Approach: 
 

  • In a BIT, root is always node 0. In first level, all nodes are of power of 2 . (1, 2, 4, 8, ….)
  • Consider any node in the first level (1, 2, 4, 8, ) its sub-tree will include all the nodes which has same number of bits as that of the root. 
    1. Sub-Tree with root 1 will have no child.
    2. Sub-Tree with root 2 will have 3 as a child.
    3. Sub-Tree with root 4 will have 5, 6, 7 as a child.
    4. Sub-Tree with root 8 will have 9, 10, 11, 12, 13, 14, 15 as a child. (Double the size of the previous subtree)
    5. So subtree with root K will have K nodes including root. And the height of each subtree would be equal: 
      • for subtree with root 1
      • for subtree with root 2
      • for subtree with root 4
  • Now, we need to find the subtree in which N lies. Say, the height of subtree just before the subtree in which N lies is H and size is L. So, the following cases are possible : 
    • Case 1 : When N >= L*2 – 1, in such a scenario N is in last level of its subtree. Thus, the diameter will be 2*H + 1. (Path from the lowest level leaf of the previous subtree to the N ).
       
    • Case 2 : When N >= L + L/2 – 1, in such a scenario N is at level H in its subtree. Thus, diameter will be 2*H.
       
    • Case 3 : Otherwise, it is optimal to consider the maximum path length between leaf nodes of two subtree just before the subtree in which N lies i.e diameter is 2*H – 1.

Below are the implementation of the above approach: 
 

C++




#include <bits/stdc++.h>
using namespace std;
 
// Function to find diameter
// of BIT with N + 1 nodes
int diameter(int n)
{
    // L is size of subtree just before subtree
    // in which N lies
    int L, H, templen;
    L = 1;
 
    // H is the height of subtree just before
    // subtree in which N lies
    H = 0;
 
    // Base Cases
    if (n == 1) {
        return 1;
    }
    if (n == 2) {
        return 2;
    }
    if (n == 3) {
        return 3;
    }
 
    // Size of subtree are power of 2
    while (L * 2 <= n) {
        L *= 2;
        H++;
    }
 
    // 3 Cases as explained in Approach
    if (n >= L * 2 - 1)
        return 2 * H + 1;
    else if (n >= L + (L / 2) - 1)
        return 2 * H;
    return 2 * H - 1;
}
 
// Driver Code
int main()
{
    int n = 15;
    cout << diameter(n) << endl;
}


Java




// Java implementation of the approach
class GFG
{
 
// Function to find diameter
// of BIT with N + 1 nodes
static int diameter(int n)
{
    // L is size of subtree just before subtree
    // in which N lies
    int L, H, templen;
    L = 1;
  
    // H is the height of subtree just before
    // subtree in which N lies
    H = 0;
  
    // Base Cases
    if (n == 1) {
        return 1;
    }
    if (n == 2) {
        return 2;
    }
    if (n == 3) {
        return 3;
    }
  
    // Size of subtree are power of 2
    while (L * 2 <= n) {
        L *= 2;
        H++;
    }
  
    // 3 Cases as explained in Approach
    if (n >= L * 2 - 1)
        return 2 * H + 1;
    else if (n >= L + (L / 2) - 1)
        return 2 * H;
    return 2 * H - 1;
}
  
// Driver Code
public static void main(String []args)
{
    int n = 15;
 
    System.out.println(diameter(n));
}
}
 
// This code contributed by PrinciRaj1992


Python3




# Python3 implementation of the approach
 
# Function to find diameter
# of BIT with N + 1 nodes
def diameter(n):
     
    # L is size of subtree just before
    # subtree in which N lies
    L, H, templen = 0, 0, 0;
    L = 1;
 
    # H is the height of subtree just before
    # subtree in which N lies
    H = 0;
 
    # Base Cases
    if (n == 1):
        return 1;
     
    if (n == 2):
        return 2;
     
    if (n == 3):
        return 3;
 
    # Size of subtree are power of 2
    while (L * 2 <= n):
        L *= 2;
        H += 1;
     
    # 3 Cases as explained in Approach
    if (n >= L * 2 - 1):
        return 2 * H + 1;
    elif (n >= L + (L / 2) - 1):
        return 2 * H;
    return 2 * H - 1;
 
# Driver Code
n = 15;
print(diameter(n));
 
# This code is contributed by Rajput-Ji


C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to find diameter
// of BIT with N + 1 nodes
static int diameter(int n)
{
    // L is size of subtree just before subtree
    // in which N lies
    int L, H;
    L = 1;
 
    // H is the height of subtree just before
    // subtree in which N lies
    H = 0;
 
    // Base Cases
    if (n == 1)
    {
        return 1;
    }
    if (n == 2)
    {
        return 2;
    }
    if (n == 3)
    {
        return 3;
    }
 
    // Size of subtree are power of 2
    while (L * 2 <= n)
    {
        L *= 2;
        H++;
    }
 
    // 3 Cases as explained in Approach
    if (n >= L * 2 - 1)
        return 2 * H + 1;
    else if (n >= L + (L / 2) - 1)
        return 2 * H;
    return 2 * H - 1;
}
 
// Driver Code
public static void Main(String []args)
{
    int n = 15;
 
    Console.WriteLine(diameter(n));
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Function to find diameter
// of BIT with N + 1 nodes
function diameter(n)
{
    // L is size of subtree just before subtree
    // in which N lies
    var L, H, templen;
    L = 1;
 
    // H is the height of subtree just before
    // subtree in which N lies
    H = 0;
 
    // Base Cases
    if (n == 1) {
        return 1;
    }
    if (n == 2) {
        return 2;
    }
    if (n == 3) {
        return 3;
    }
 
    // Size of subtree are power of 2
    while (L * 2 <= n) {
        L *= 2;
        H++;
    }
 
    // 3 Cases as explained in Approach
    if (n >= L * 2 - 1)
        return 2 * H + 1;
    else if (n >= L + (L / 2) - 1)
        return 2 * H;
    return 2 * H - 1;
}
 
// Driver Code
var n = 15;
document.write( diameter(n));
 
</script>


Output: 

7

 

Time Complexity: O(log n)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Most Popular

Recent Comments