Given a directed graph, check whether the graph contains a cycle or not. Your function should return true if the given graph contains at least one cycle, else return false. For example, the following graph contains two cycles 0->1->2->3->0 and 2->4->2, so your function must return true.
We have discussed a DFS based solution to detect cycle in a directed graph. In this post, BFS based solution is discussed.
The idea is to simply use Kahn’s algorithm for Topological Sorting
Steps involved in detecting cycle in a directed graph using BFS.
Step-1: Compute in-degree (number of incoming edges) for each of the vertex present in the graph and initialize the count of visited nodes as 0.
Step-2: Pick all the vertices with in-degree as 0 and add them into a queue (Enqueue operation)
Step-3: Remove a vertex from the queue (Dequeue operation) and then.
- Increment count of visited nodes by 1.
- Decrease in-degree by 1 for all its neighboring nodes.
- If in-degree of a neighboring nodes is reduced to zero, then add it to the queue.
Step 4: Repeat Step 3 until the queue is empty.
Step 5: If count of visited nodes is not equal to the number of nodes in the graph has cycle, otherwise not.
How to find in-degree of each node?
There are 2 ways to calculate in-degree of every vertex:
Take an in-degree array which will keep track of
1) Traverse the array of edges and simply increase the counter of the destination node by 1.
for each node in Nodes indegree[node] = 0; for each edge(src,dest) in Edges indegree[dest]++
Time Complexity: O(V+E)
2) Traverse the list for every node and then increment the in-degree of all the nodes connected to it by 1.
for each node in Nodes If (list[node].size()!=0) then for each dest in list indegree[dest]++;
Time Complexity: The outer for loop will be executed V number of times and the inner for loop will be executed E number of times, Thus overall time complexity is O(V+E).
The overall time complexity of the algorithm is O(V+E)
C++
// A C++ program to check if there is a cycle in // directed graph using BFS. #include <bits/stdc++.h> using namespace std; // Class to represent a graph class Graph { int V; // No. of vertices' // Pointer to an array containing adjacency list list< int >* adj; public : Graph( int V); // Constructor // function to add an edge to graph void addEdge( int u, int v); // Returns true if there is a cycle in the graph // else false. bool isCycle(); }; Graph::Graph( int V) { this ->V = V; adj = new list< int >[V]; } void Graph::addEdge( int u, int v) { adj[u].push_back(v); } // This function returns true if there is a cycle // in directed graph, else returns false. bool Graph::isCycle() { // Create a vector to store indegrees of all // vertices. Initialize all indegrees as 0. vector< int > in_degree(V, 0); // Traverse adjacency lists to fill indegrees of // vertices. This step takes O(V+E) time for ( int u = 0; u < V; u++) { for ( auto v : adj[u]) in_degree[v]++; } // Create an queue and enqueue all vertices with // indegree 0 queue< int > q; for ( int i = 0; i < V; i++) if (in_degree[i] == 0) q.push(i); // Initialize count of visited vertices // 1 For src Node int cnt = 1; // Create a vector to store result (A topological // ordering of the vertices) vector< int > top_order; // One by one dequeue vertices from queue and enqueue // adjacents if indegree of adjacent becomes 0 while (!q.empty()) { // Extract front of queue (or perform dequeue) // and add it to topological order int u = q.front(); q.pop(); top_order.push_back(u); // Iterate through all its neighbouring nodes // of dequeued node u and decrease their in-degree // by 1 list< int >::iterator itr; for (itr = adj[u].begin(); itr != adj[u].end(); itr++) // If in-degree becomes zero, add it to queue if (--in_degree[*itr] == 0) { q.push(*itr); //while we are pushing elements to the queue we will incrementing the cnt cnt++; } } // Check if there was a cycle if (cnt != V) return true ; else return false ; } // Driver program to test above functions int main() { // Create a graph given in the above diagram Graph g(6); g.addEdge(0, 1); g.addEdge(1, 2); g.addEdge(2, 0); g.addEdge(3, 4); g.addEdge(4, 5); if (g.isCycle()) cout << "Yes" ; else cout << "No" ; return 0; } |
Java
// Java program to check if there is a cycle in // directed graph using BFS. import java.io.*; import java.util.*; class GFG { // Class to represent a graph static class Graph { int V; // No. of vertices' // Pointer to an array containing adjacency list Vector<Integer>[] adj; @SuppressWarnings ( "unchecked" ) Graph( int V) { // Constructor this .V = V; this .adj = new Vector[V]; for ( int i = 0 ; i < V; i++) adj[i] = new Vector<>(); } // function to add an edge to graph void addEdge( int u, int v) { adj[u].add(v); } // Returns true if there is a cycle in the graph // else false. // This function returns true if there is a cycle // in directed graph, else returns false. boolean isCycle() { // Create a vector to store indegrees of all // vertices. Initialize all indegrees as 0. int [] in_degree = new int [ this .V]; Arrays.fill(in_degree, 0 ); // Traverse adjacency lists to fill indegrees of // vertices. This step takes O(V+E) time for ( int u = 0 ; u < V; u++) { for ( int v : adj[u]) in_degree[v]++; } // Create an queue and enqueue all vertices with // indegree 0 Queue<Integer> q = new LinkedList<Integer>(); for ( int i = 0 ; i < V; i++) if (in_degree[i] == 0 ) q.add(i); // Initialize count of visited vertices int cnt = 0 ; // Create a vector to store result (A topological // ordering of the vertices) Vector<Integer> top_order = new Vector<>(); // One by one dequeue vertices from queue and enqueue // adjacents if indegree of adjacent becomes 0 while (!q.isEmpty()) { // Extract front of queue (or perform dequeue) // and add it to topological order int u = q.poll(); top_order.add(u); // Iterate through all its neighbouring nodes // of dequeued node u and decrease their in-degree // by 1 for ( int itr : adj[u]) if (--in_degree[itr] == 0 ) q.add(itr); cnt++; } // Check if there was a cycle if (cnt != this .V) return true ; else return false ; } } // Driver Code public static void main(String[] args) { // Create a graph given in the above diagram Graph g = new Graph( 6 ); g.addEdge( 0 , 1 ); g.addEdge( 1 , 2 ); g.addEdge( 2 , 0 ); g.addEdge( 3 , 4 ); g.addEdge( 4 , 5 ); if (g.isCycle()) System.out.println( "Yes" ); else System.out.println( "No" ); } } // This code is contributed by // sanjeev2552 |
Python3
# A Python3 program to check if there is a cycle in # directed graph using BFS. import math import sys from collections import defaultdict # Class to represent a graph class Graph: def __init__( self ,vertices): self .graph = defaultdict( list ) self .V = vertices # No. of vertices' # function to add an edge to graph def addEdge( self ,u,v): self .graph[u].append(v) # This function returns true if there is a cycle # in directed graph, else returns false. def isCycleExist(n,graph): # Create a vector to store indegrees of all # vertices. Initialize all indegrees as 0. in_degree = [ 0 ] * n # Traverse adjacency lists to fill indegrees of # vertices. This step takes O(V+E) time for i in range (n): for j in graph[i]: in_degree[j] + = 1 # Create an queue and enqueue all vertices with # indegree 0 queue = [] for i in range ( len (in_degree)): if in_degree[i] = = 0 : queue.append(i) # Initialize count of visited vertices cnt = 0 # One by one dequeue vertices from queue and enqueue # adjacents if indegree of adjacent becomes 0 while (queue): # Extract front of queue (or perform dequeue) # and add it to topological order nu = queue.pop( 0 ) # Iterate through all its neighbouring nodes # of dequeued node u and decrease their in-degree # by 1 for v in graph[nu]: in_degree[v] - = 1 # If in-degree becomes zero, add it to queue if in_degree[v] = = 0 : queue.append(v) cnt + = 1 # Check if there was a cycle if cnt = = n: return False else : return True # Driver program to test above functions if __name__ = = '__main__' : # Create a graph given in the above diagram g = Graph( 6 ) g.addEdge( 0 , 1 ) g.addEdge( 1 , 2 ) g.addEdge( 2 , 0 ) g.addEdge( 3 , 4 ) g.addEdge( 4 , 5 ) if isCycleExist(g.V,g.graph): print ( "Yes" ) else : print ( "No" ) # This Code is Contributed by Vikash Kumar 37 |
C#
// C# program to check if there is a cycle in // directed graph using BFS. using System; using System.Collections.Generic; class GFG{ // Class to represent a graph public class Graph { // No. of vertices' public int V; // Pointer to an array containing // adjacency list public List< int >[] adj; public Graph( int V) { // Constructor this .V = V; this .adj = new List< int >[V]; for ( int i = 0; i < V; i++) adj[i] = new List< int >(); } // Function to add an edge to graph public void addEdge( int u, int v) { adj[u].Add(v); } // Returns true if there is a cycle in the // graph else false. // This function returns true if there is // a cycle in directed graph, else returns // false. public bool isCycle() { // Create a vector to store indegrees of all // vertices. Initialize all indegrees as 0. int [] in_degree = new int [ this .V]; // Traverse adjacency lists to fill indegrees // of vertices. This step takes O(V+E) time for ( int u = 0; u < V; u++) { foreach ( int v in adj[u]) in_degree[v]++; } // Create an queue and enqueue all // vertices with indegree 0 Queue< int > q = new Queue< int >(); for ( int i = 0; i < V; i++) if (in_degree[i] == 0) q.Enqueue(i); // Initialize count of visited vertices int cnt = 0; // Create a vector to store result // (A topological ordering of the // vertices) List< int > top_order = new List< int >(); // One by one dequeue vertices from // queue and enqueue adjacents if // indegree of adjacent becomes 0 while (q.Count != 0) { // Extract front of queue (or perform // dequeue) and add it to topological // order int u = q.Peek(); q.Dequeue(); top_order.Add(u); // Iterate through all its neighbouring // nodes of dequeued node u and decrease // their in-degree by 1 foreach ( int itr in adj[u]) if (--in_degree[itr] == 0) q.Enqueue(itr); cnt++; } // Check if there was a cycle if (cnt != this .V) return true ; else return false ; } } // Driver Code public static void Main(String[] args) { // Create a graph given in the above diagram Graph g = new Graph(6); g.addEdge(0, 1); g.addEdge(1, 2); g.addEdge(2, 0); g.addEdge(3, 4); g.addEdge(4, 5); if (g.isCycle()) Console.WriteLine( "Yes" ); else Console.WriteLine( "No" ); } } // This code is contributed by Princi Singh |
Javascript
<script> // JavaScript program to check if there is a cycle in // directed graph using BFS. // Class to represent a graph // No. of vertices' var V = 0; // Pointer to an array containing // adjacency list var adj ; function initialize(v) { // Constructor V = v; adj = Array.from(Array(V), ()=>Array(V)); } // Function to add an edge to graph function addEdge(u, v) { adj[u].push(v); } // Returns true if there is a cycle in the // graph else false. // This function returns true if there is // a cycle in directed graph, else returns // false. function isCycle() { // Create a vector to store indegrees of all // vertices. Initialize all indegrees as 0. var in_degree = Array(V).fill(0); // Traverse adjacency lists to fill indegrees // of vertices. This step takes O(V+E) time for ( var u = 0; u < V; u++) { for ( var v of adj[u]) in_degree[v]++; } // Create an queue and enqueue all // vertices with indegree 0 var q = []; for ( var i = 0; i < V; i++) if (in_degree[i] == 0) q.push(i); // Initialize count of visited vertices var cnt = 0; // Create a vector to store result // (A topological ordering of the // vertices) var top_order = []; // One by one dequeue vertices from // queue and enqueue adjacents if // indegree of adjacent becomes 0 while (q.length != 0) { // Extract front of queue (or perform // dequeue) and add it to topological // order var u = q[0]; q.shift(); top_order.push(u); // Iterate through all its neighbouring // nodes of dequeued node u and decrease // their in-degree by 1 for ( var itr of adj[u]) if (--in_degree[itr] == 0) q.push(itr); cnt++; } // Check if there was a cycle if (cnt != V) return true ; else return false ; } // Create a graph given in the above diagram initialize(6) addEdge(0, 1); addEdge(1, 2); addEdge(2, 0); addEdge(3, 4); addEdge(4, 5); if (isCycle()) document.write( "Yes" ); else document.write( "No" ); </script> |
Yes
Time Complexity: O(V+E)
Auxiliary Space: O(V)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!