Wednesday, January 1, 2025
Google search engine
HomeData Modelling & AIDetect Cycle in a Directed Graph using BFS

Detect Cycle in a Directed Graph using BFS

Given a directed graph, check whether the graph contains a cycle or not. Your function should return true if the given graph contains at least one cycle, else return false. For example, the following graph contains two cycles 0->1->2->3->0 and 2->4->2, so your function must return true.

We have discussed a DFS based solution to detect cycle in a directed graph. In this post, BFS based solution is discussed.
The idea is to simply use Kahn’s algorithm for Topological Sorting

Steps involved in detecting cycle in a directed graph using BFS.
Step-1: Compute in-degree (number of incoming edges) for each of the vertex present in the graph and initialize the count of visited nodes as 0.
Step-2: Pick all the vertices with in-degree as 0 and add them into a queue (Enqueue operation)
Step-3: Remove a vertex from the queue (Dequeue operation) and then. 

  1. Increment count of visited nodes by 1.
  2. Decrease in-degree by 1 for all its neighboring nodes.
  3. If in-degree of a neighboring nodes is reduced to zero, then add it to the queue.

Step 4: Repeat Step 3 until the queue is empty.
Step 5: If count of visited nodes is not equal to the number of nodes in the graph has cycle, otherwise not.

How to find in-degree of each node? 
There are 2 ways to calculate in-degree of every vertex: 
Take an in-degree array which will keep track of 
1) Traverse the array of edges and simply increase the counter of the destination node by 1. 

for each node in Nodes
    indegree[node] = 0;
for each edge(src,dest) in Edges
    indegree[dest]++

Time Complexity: O(V+E)

2) Traverse the list for every node and then increment the in-degree of all the nodes connected to it by 1. 

    for each node in Nodes
        If (list[node].size()!=0) then
        for each dest in list
            indegree[dest]++;

Time Complexity: The outer for loop will be executed V number of times and the inner for loop will be executed E number of times, Thus overall time complexity is O(V+E).

The overall time complexity of the algorithm is O(V+E) 

C++




// A C++ program to check if there is a cycle in
// directed graph using BFS.
#include <bits/stdc++.h>
using namespace std;
 
// Class to represent a graph
class Graph {
    int V; // No. of vertices'
 
    // Pointer to an array containing adjacency list
    list<int>* adj;
 
public:
    Graph(int V); // Constructor
 
    // function to add an edge to graph
    void addEdge(int u, int v);
 
    // Returns true if there is a cycle in the graph
    // else false.
    bool isCycle();
};
 
Graph::Graph(int V)
{
    this->V = V;
    adj = new list<int>[V];
}
 
void Graph::addEdge(int u, int v)
{
    adj[u].push_back(v);
}
 
// This function returns true if there is a cycle
// in directed graph, else returns false.
bool Graph::isCycle()
{
    // Create a vector to store indegrees of all
    // vertices. Initialize all indegrees as 0.
    vector<int> in_degree(V, 0);
 
    // Traverse adjacency lists to fill indegrees of
    // vertices. This step takes O(V+E) time
    for (int u = 0; u < V; u++) {
        for (auto v : adj[u])
            in_degree[v]++;
    }
 
    // Create an queue and enqueue all vertices with
    // indegree 0
    queue<int> q;
    for (int i = 0; i < V; i++)
        if (in_degree[i] == 0)
            q.push(i);
 
    // Initialize count of visited vertices
    // 1 For src Node
    int cnt = 1;
 
    // Create a vector to store result (A topological
    // ordering of the vertices)
    vector<int> top_order;
 
    // One by one dequeue vertices from queue and enqueue
    // adjacents if indegree of adjacent becomes 0
    while (!q.empty()) {
 
        // Extract front of queue (or perform dequeue)
        // and add it to topological order
        int u = q.front();
        q.pop();
        top_order.push_back(u);
 
        // Iterate through all its neighbouring nodes
        // of dequeued node u and decrease their in-degree
        // by 1
        list<int>::iterator itr;
        for (itr = adj[u].begin(); itr != adj[u].end(); itr++)
 
            // If in-degree becomes zero, add it to queue
            if (--in_degree[*itr] == 0)
            {
              q.push(*itr);
              //while we are pushing elements to the queue we will incrementing the cnt
              cnt++;
            }
 
        
    }
 
    // Check if there was a cycle
    if (cnt != V)
        return true;
    else
        return false;
}
 
// Driver program to test above functions
int main()
{
    // Create a graph given in the above diagram
    Graph g(6);
    g.addEdge(0, 1);
    g.addEdge(1, 2);
    g.addEdge(2, 0);
    g.addEdge(3, 4);
    g.addEdge(4, 5);
 
    if (g.isCycle())
        cout << "Yes";
    else
        cout << "No";
 
    return 0;
}


Java




// Java program to check if there is a cycle in
// directed graph using BFS.
import java.io.*;
import java.util.*;
 
class GFG
{
 
    // Class to represent a graph
    static class Graph
    {
        int V; // No. of vertices'
 
        // Pointer to an array containing adjacency list
        Vector<Integer>[] adj;
 
        @SuppressWarnings("unchecked")
        Graph(int V)
        {
            // Constructor
            this.V = V;
            this.adj = new Vector[V];
            for (int i = 0; i < V; i++)
                adj[i] = new Vector<>();
        }
 
        // function to add an edge to graph
        void addEdge(int u, int v)
        {
            adj[u].add(v);
        }
 
        // Returns true if there is a cycle in the graph
        // else false.
 
        // This function returns true if there is a cycle
        // in directed graph, else returns false.
        boolean isCycle()
        {
 
            // Create a vector to store indegrees of all
            // vertices. Initialize all indegrees as 0.
            int[] in_degree = new int[this.V];
            Arrays.fill(in_degree, 0);
 
            // Traverse adjacency lists to fill indegrees of
            // vertices. This step takes O(V+E) time
            for (int u = 0; u < V; u++)
            {
                for (int v : adj[u])
                    in_degree[v]++;
            }
 
            // Create an queue and enqueue all vertices with
            // indegree 0
            Queue<Integer> q = new LinkedList<Integer>();
            for (int i = 0; i < V; i++)
                if (in_degree[i] == 0)
                    q.add(i);
 
            // Initialize count of visited vertices
            int cnt = 0;
 
            // Create a vector to store result (A topological
            // ordering of the vertices)
            Vector<Integer> top_order = new Vector<>();
 
            // One by one dequeue vertices from queue and enqueue
            // adjacents if indegree of adjacent becomes 0
            while (!q.isEmpty())
            {
 
                // Extract front of queue (or perform dequeue)
                // and add it to topological order
                int u = q.poll();
                top_order.add(u);
 
                // Iterate through all its neighbouring nodes
                // of dequeued node u and decrease their in-degree
                // by 1
                for (int itr : adj[u])
                    if (--in_degree[itr] == 0)
                        q.add(itr);
                cnt++;
            }
 
            // Check if there was a cycle
            if (cnt != this.V)
                return true;
            else
                return false;
        }
    }
 
    // Driver Code
    public static void main(String[] args)
    {
 
        // Create a graph given in the above diagram
        Graph g = new Graph(6);
        g.addEdge(0, 1);
        g.addEdge(1, 2);
        g.addEdge(2, 0);
        g.addEdge(3, 4);
        g.addEdge(4, 5);
 
        if (g.isCycle())
            System.out.println("Yes");
        else
            System.out.println("No");
    }
}
 
// This code is contributed by
// sanjeev2552


Python3




# A Python3 program to check if there is a cycle in 
# directed graph using BFS.
import math
import sys
from collections import defaultdict
 
# Class to represent a graph
class Graph:
    def __init__(self,vertices):
        self.graph=defaultdict(list)
        self.V=vertices # No. of vertices'
     
    # function to add an edge to graph
    def addEdge(self,u,v):
        self.graph[u].append(v)
 
# This function returns true if there is a cycle
# in directed graph, else returns false.
def isCycleExist(n,graph):
 
    # Create a vector to store indegrees of all
    # vertices. Initialize all indegrees as 0.
    in_degree=[0]*n
 
    # Traverse adjacency lists to fill indegrees of
    # vertices. This step takes O(V+E) time
    for i in range(n):
        for j in graph[i]:
            in_degree[j]+=1
     
    # Create an queue and enqueue all vertices with
    # indegree 0
    queue=[]
    for i in range(len(in_degree)):
        if in_degree[i]==0:
            queue.append(i)
     
    # Initialize count of visited vertices
    cnt=0
 
    # One by one dequeue vertices from queue and enqueue
    # adjacents if indegree of adjacent becomes 0
    while(queue):
 
        # Extract front of queue (or perform dequeue)
        # and add it to topological order
        nu=queue.pop(0)
 
        # Iterate through all its neighbouring nodes
        # of dequeued node u and decrease their in-degree
        # by 1
        for v in graph[nu]:
            in_degree[v]-=1
 
            # If in-degree becomes zero, add it to queue
            if in_degree[v]==0:
                queue.append(v)
        cnt+=1
 
    # Check if there was a cycle
    if cnt==n:
        return False
    else:
        return True
         
 
# Driver program to test above functions
if __name__=='__main__':
 
    # Create a graph given in the above diagram
    g=Graph(6)
    g.addEdge(0,1)
    g.addEdge(1,2)
    g.addEdge(2,0)
    g.addEdge(3,4)
    g.addEdge(4,5)
     
    if isCycleExist(g.V,g.graph):
        print("Yes")
    else:
        print("No")
 
# This Code is Contributed by Vikash Kumar 37


C#




// C# program to check if there is a cycle in
// directed graph using BFS.
using System;
using System.Collections.Generic;
 
class GFG{
     
// Class to represent a graph
public class Graph
{
     
    // No. of vertices'
    public int V;
     
    // Pointer to an array containing
    // adjacency list
    public List<int>[] adj;
     
    public Graph(int V)
    {
         
        // Constructor
        this.V = V;
        this.adj = new List<int>[V];
        for (int i = 0; i < V; i++)
        adj[i] = new List<int>();
    }
     
    // Function to add an edge to graph
    public void addEdge(int u, int v)
    {
        adj[u].Add(v);
    }
     
    // Returns true if there is a cycle in the
    // graph else false.
     
    // This function returns true if there is
    // a cycle in directed graph, else returns
    // false.
    public bool isCycle()
    {
         
        // Create a vector to store indegrees of all
        // vertices. Initialize all indegrees as 0.
        int[] in_degree = new int[this.V];
         
        // Traverse adjacency lists to fill indegrees
        // of vertices. This step takes O(V+E) time
        for(int u = 0; u < V; u++)
        {
            foreach(int v in adj[u])
                in_degree[v]++;
        }
         
        // Create an queue and enqueue all
        // vertices with indegree 0
        Queue<int> q = new Queue<int>();
        for(int i = 0; i < V; i++)
            if (in_degree[i] == 0)
                q.Enqueue(i);
         
        // Initialize count of visited vertices
        int cnt = 0;
         
        // Create a vector to store result
        // (A topological ordering of the
        // vertices)
        List<int> top_order = new List<int>();
         
        // One by one dequeue vertices from
        // queue and enqueue adjacents if
        // indegree of adjacent becomes 0
        while (q.Count != 0)
        {
         
            // Extract front of queue (or perform
            // dequeue) and add it to topological
            // order
            int u = q.Peek();
            q.Dequeue();
            top_order.Add(u);
             
            // Iterate through all its neighbouring
            // nodes of dequeued node u and decrease
            // their in-degree by 1
            foreach(int itr in adj[u])
                if (--in_degree[itr] == 0)
                    q.Enqueue(itr);
                     
            cnt++;
        }
         
        // Check if there was a cycle
        if (cnt != this.V)
            return true;
        else
            return false;
    }
}
 
// Driver Code
public static void Main(String[] args)
{
     
    // Create a graph given in the above diagram
    Graph g = new Graph(6);
    g.addEdge(0, 1);
    g.addEdge(1, 2);
    g.addEdge(2, 0);
    g.addEdge(3, 4);
    g.addEdge(4, 5);
 
    if (g.isCycle())
        Console.WriteLine("Yes");
    else
        Console.WriteLine("No");
}
}
 
// This code is contributed by Princi Singh


Javascript




<script>
 
// JavaScript program to check if there is a cycle in
// directed graph using BFS.
 
// Class to represent a graph
// No. of vertices'
var V = 0;
 
// Pointer to an array containing
// adjacency list
var adj ;
 
function initialize(v)
{
     
    // Constructor
    V = v;
    adj = Array.from(Array(V), ()=>Array(V));
}
 
// Function to add an edge to graph
function addEdge(u, v)
{
    adj[u].push(v);
}
 
// Returns true if there is a cycle in the
// graph else false.
 
// This function returns true if there is
// a cycle in directed graph, else returns
// false.
function isCycle()
{
     
    // Create a vector to store indegrees of all
    // vertices. Initialize all indegrees as 0.
    var in_degree = Array(V).fill(0);
     
    // Traverse adjacency lists to fill indegrees
    // of vertices. This step takes O(V+E) time
    for(var u = 0; u < V; u++)
    {
        for(var v of adj[u])
            in_degree[v]++;
    }
     
    // Create an queue and enqueue all
    // vertices with indegree 0
    var q = [];
    for(var i = 0; i < V; i++)
        if (in_degree[i] == 0)
            q.push(i);
     
    // Initialize count of visited vertices
    var cnt = 0;
     
    // Create a vector to store result
    // (A topological ordering of the
    // vertices)
    var top_order = [];
     
    // One by one dequeue vertices from
    // queue and enqueue adjacents if
    // indegree of adjacent becomes 0
    while (q.length != 0)
    {
     
        // Extract front of queue (or perform
        // dequeue) and add it to topological
        // order
        var u = q[0];
        q.shift();
        top_order.push(u);
         
        // Iterate through all its neighbouring
        // nodes of dequeued node u and decrease
        // their in-degree by 1
        for(var itr of adj[u])
            if (--in_degree[itr] == 0)
                q.push(itr);
                 
        cnt++;
    }
     
    // Check if there was a cycle
    if (cnt != V)
        return true;
    else
        return false;
}
 
// Create a graph given in the above diagram
initialize(6)
addEdge(0, 1);
addEdge(1, 2);
addEdge(2, 0);
addEdge(3, 4);
addEdge(4, 5);
if (isCycle())
    document.write("Yes");
else
    document.write("No");
 
 
</script>


Output: 

Yes

 

Time Complexity: O(V+E)
Auxiliary Space: O(V) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments