Given a directed weighted graph, the task is to find whether the given graph contains any negative-weight cycle or not.
Note: A negative-weight cycle is a cycle in a graph whose edges sum to a negative value.
Example:
Input:

Example 1
Output: No
Input:
Example 2
Output: Yes
Algorithm to Find Negative Cycle in a Directed Weighted Graph Using Bellman-Ford:
- Initialize distance array dist[] for each vertex ‘v‘ as dist[v] = INFINITY.
- Assume any vertex (let’s say ‘0’) as source and assign dist = 0.
- Relax all the edges(u,v,weight) N-1 times as per the below condition:
- dist[v] = minimum(dist[v], distance[u] + weight)
 
- Now, Relax all the edges one more time i.e. the Nth time and based on the below two cases we can detect the negative cycle:
- Case 1 (Negative cycle exists): For any edge(u, v, weight), if dist[u] + weight < dist[v]
- Case 2 (No Negative cycle) : case 1 fails for all the edges.
 
Working of Bellman-Ford Algorithm to Detect the Negative cycle in the graph:
Let’s suppose we have a graph which is given below and we want to find whether there exists a negative cycle or not using Bellman-Ford.

Initial Graph
Step-1: Initialize a distance array Dist[] to store the shortest distance for each vertex from the source vertex. Initially distance of source will be 0 and Distance of other vertices will be INFINITY.

Initialize a distance array
Step 2: Start relaxing the edges, during 1st Relaxation:
- Current Distance of B > (Distance of A) + (Weight of A to B) i.e. Infinity > 0 + 5
- Therefore, Dist[B] = 5

1st Relaxation
Step 3: During 2nd Relaxation:
- Current Distance of D > (Distance of B) + (Weight of B to D) i.e. Infinity > 5 + 2
- Dist[D] = 7
- Current Distance of C > (Distance of B) + (Weight of B to C) i.e. Infinity > 5 + 1
- Dist[C] = 6

2nd Relaxation
Step 4: During 3rd Relaxation:
- Current Distance of F > (Distance of D ) + (Weight of D to F) i.e. Infinity > 7 + 2
- Dist[F] = 9
- Current Distance of E > (Distance of C ) + (Weight of C to E) i.e. Infinity > 6 + 1
- Dist[E] = 7

3rd Relaxation
Step 5: During 4th Relaxation:
- Current Distance of D > (Distance of E) + (Weight of E to D) i.e. 7 > 7 + (-1)
- Dist[D] = 6
- Current Distance of E > (Distance of F ) + (Weight of F to E) i.e. 7 > 9 + (-3)
- Dist[E] = 6

4th Relaxation
Step 6: During 5th Relaxation:
- Current Distance of F > (Distance of D) + (Weight of D to F) i.e. 9 > 6 + 2
- Dist[F] = 8
- Current Distance of D > (Distance of E ) + (Weight of E to D) i.e. 6 > 6 + (-1)
- Dist[E] = 5
- Since the graph h 6 vertices, So during the 5th relaxation the shortest distance for all the vertices should have been calculated.

5th Relaxation
Step 7: Now the final relaxation i.e. the 6th relaxation should indicate the presence of negative cycle if there is any changes in the distance array of 5th relaxation.
During the 6th relaxation, following changes can be seen:
- Current Distance of E > (Distance of F) + (Weight of F to E) i.e. 6 > 8 + (-3)
- Dist[E]=5
- Current Distance of F > (Distance of D ) + (Weight of D to F) i.e. 8 > 5 + 2
- Dist[F]=7
Since we observer changes in the Distance array Hence ,we can conclude the presence of a negative cycle in the graph.

6th Relaxation
Result: A negative cycle (D->F->E) exists in the graph.
Below is the implementation to detect Negative cycle in a graph:
C++
| // A C++ program for Bellman-Ford's single source// shortest path algorithm.#include <bits/stdc++.h>usingnamespacestd;  // A structure to represent a weighted edge in graphstructEdge {    intsrc, dest, weight;};  // A structure to represent a connected, directed and// weighted graphstructGraph {    // V-> Number of vertices, E-> Number of edges    intV, E;      // Graph is represented as an array of edges.    structEdge* edge;};  // Creates a graph with V vertices and E edgesstructGraph* createGraph(intV, intE){    structGraph* graph = newGraph;    graph->V = V;    graph->E = E;    graph->edge = newEdge[graph->E];    returngraph;}  // The main function that finds shortest distances// from src to all other vertices using Bellman-// Ford algorithm. The function also detects// negative weight cycleboolisNegCycleBellmanFord(structGraph* graph, intsrc,                           intdist[]){    intV = graph->V;    intE = graph->E;      // Step 1: Initialize distances from src    // to all other vertices as INFINITE    for(inti = 0; i < V; i++)        dist[i] = INT_MAX;    dist[src] = 0;      // Step 2: Relax all edges |V| - 1 times.    // A simple shortest path from src to any    // other vertex can have at-most |V| - 1    // edges    for(inti = 1; i <= V - 1; i++) {        for(intj = 0; j < E; j++) {            intu = graph->edge[j].src;            intv = graph->edge[j].dest;            intweight = graph->edge[j].weight;            if(dist[u] != INT_MAX                && dist[u] + weight < dist[v])                dist[v] = dist[u] + weight;        }    }      // Step 3: check for negative-weight cycles.    // The above step guarantees shortest distances    // if graph doesn't contain negative weight cycle.    // If we get a shorter path, then there    // is a cycle.    for(inti = 0; i < E; i++) {        intu = graph->edge[i].src;        intv = graph->edge[i].dest;        intweight = graph->edge[i].weight;        if(dist[u] != INT_MAX            && dist[u] + weight < dist[v])            returntrue;    }      returnfalse;}  // Returns true if given graph has negative weight// cycle.boolisNegCycleDisconnected(structGraph* graph){      intV = graph->V;      // To keep track of visited vertices to avoid    // recomputations.    boolvisited[V];    memset(visited, 0, sizeof(visited));      // This array is filled by Bellman-Ford    intdist[V];      // Call Bellman-Ford for all those vertices    // that are not visited    for(inti = 0; i < V; i++) {        if(visited[i] == false) {            // If cycle found            if(isNegCycleBellmanFord(graph, i, dist))                returntrue;              // Mark all vertices that are visited            // in above call.            for(inti = 0; i < V; i++)                if(dist[i] != INT_MAX)                    visited[i] = true;        }    }      returnfalse;}  // Driver Codeintmain(){      // Number of vertices in graph    intV = 5;      // Number of edges in graph    intE = 8;      // Let us create the graph given in above example    structGraph* graph = createGraph(V, E);      graph->edge[0].src = 0;    graph->edge[0].dest = 1;    graph->edge[0].weight = -1;      graph->edge[1].src = 0;    graph->edge[1].dest = 2;    graph->edge[1].weight = 4;      graph->edge[2].src = 1;    graph->edge[2].dest = 2;    graph->edge[2].weight = 3;      graph->edge[3].src = 1;    graph->edge[3].dest = 3;    graph->edge[3].weight = 2;      graph->edge[4].src = 1;    graph->edge[4].dest = 4;    graph->edge[4].weight = 2;      graph->edge[5].src = 3;    graph->edge[5].dest = 2;    graph->edge[5].weight = 5;      graph->edge[6].src = 3;    graph->edge[6].dest = 1;    graph->edge[6].weight = 1;      graph->edge[7].src = 4;    graph->edge[7].dest = 3;    graph->edge[7].weight = -3;      if(isNegCycleDisconnected(graph))        cout << "Yes";    else        cout << "No";      return0;} | 
Java
| // A Java program for Bellman-Ford's single source// shortest path algorithm.importjava.util.*;  classGFG {      // A structure to represent a weighted    // edge in graph    staticclassEdge {        intsrc, dest, weight;    }      // A structure to represent a connected,    // directed and weighted graph    staticclassGraph {          // V-> Number of vertices,        // E-> Number of edges        intV, E;          // Graph is represented as        // an array of edges.        Edge edge[];    }      // Creates a graph with V vertices and E edges    staticGraph createGraph(intV, intE)    {        Graph graph = newGraph();        graph.V = V;        graph.E = E;        graph.edge = newEdge[graph.E];          for(inti = 0; i < graph.E; i++) {            graph.edge[i] = newEdge();        }          returngraph;    }      // The main function that finds shortest distances    // from src to all other vertices using Bellman-    // Ford algorithm. The function also detects    // negative weight cycle    staticboolean    isNegCycleBellmanFord(Graph graph, intsrc, intdist[])    {        intV = graph.V;        intE = graph.E;          // Step 1: Initialize distances from src        // to all other vertices as INFINITE        for(inti = 0; i < V; i++)            dist[i] = Integer.MAX_VALUE;          dist[src] = 0;          // Step 2: Relax all edges |V| - 1 times.        // A simple shortest path from src to any        // other vertex can have at-most |V| - 1        // edges        for(inti = 1; i <= V - 1; i++) {            for(intj = 0; j < E; j++) {                intu = graph.edge[j].src;                intv = graph.edge[j].dest;                intweight = graph.edge[j].weight;                  if(dist[u] != Integer.MAX_VALUE                    && dist[u] + weight < dist[v])                    dist[v] = dist[u] + weight;            }        }          // Step 3: check for negative-weight cycles.        // The above step guarantees shortest distances        // if graph doesn't contain negative weight cycle.        // If we get a shorter path, then there        // is a cycle.        for(inti = 0; i < E; i++) {            intu = graph.edge[i].src;            intv = graph.edge[i].dest;            intweight = graph.edge[i].weight;              if(dist[u] != Integer.MAX_VALUE                && dist[u] + weight < dist[v])                returntrue;        }          returnfalse;    }      // Returns true if given graph has negative weight    // cycle.    staticbooleanisNegCycleDisconnected(Graph graph)    {        intV = graph.V;          // To keep track of visited vertices        // to avoid recomputations.        booleanvisited[] = newboolean[V];        Arrays.fill(visited, false);          // This array is filled by Bellman-Ford        intdist[] = newint[V];          // Call Bellman-Ford for all those vertices        // that are not visited        for(inti = 0; i < V; i++) {            if(visited[i] == false) {                  // If cycle found                if(isNegCycleBellmanFord(graph, i, dist))                    returntrue;                  // Mark all vertices that are visited                // in above call.                for(intj = 0; j < V; j++)                    if(dist[j] != Integer.MAX_VALUE)                        visited[j] = true;            }        }        returnfalse;    }      // Driver Code    publicstaticvoidmain(String[] args)    {        intV = 5, E = 8;        Graph graph = createGraph(V, E);          // Add edge 0-1 (or A-B in above figure)        graph.edge[0].src = 0;        graph.edge[0].dest = 1;        graph.edge[0].weight = -1;          // Add edge 0-2 (or A-C in above figure)        graph.edge[1].src = 0;        graph.edge[1].dest = 2;        graph.edge[1].weight = 4;          // Add edge 1-2 (or B-C in above figure)        graph.edge[2].src = 1;        graph.edge[2].dest = 2;        graph.edge[2].weight = 3;          // Add edge 1-3 (or B-D in above figure)        graph.edge[3].src = 1;        graph.edge[3].dest = 3;        graph.edge[3].weight = 2;          // Add edge 1-4 (or A-E in above figure)        graph.edge[4].src = 1;        graph.edge[4].dest = 4;        graph.edge[4].weight = 2;          // Add edge 3-2 (or D-C in above figure)        graph.edge[5].src = 3;        graph.edge[5].dest = 2;        graph.edge[5].weight = 5;          // Add edge 3-1 (or D-B in above figure)        graph.edge[6].src = 3;        graph.edge[6].dest = 1;        graph.edge[6].weight = 1;          // Add edge 4-3 (or E-D in above figure)        graph.edge[7].src = 4;        graph.edge[7].dest = 3;        graph.edge[7].weight = -3;          if(isNegCycleDisconnected(graph))            System.out.println("Yes");        else            System.out.println("No");    }}  // This code is contributed by adityapande88 | 
Python
| # A Python3 program for Bellman-Ford's single source# shortest path algorithm.  # The main function that finds shortest distances# from src to all other vertices using Bellman-# Ford algorithm. The function also detects# negative weight cycle    defisNegCycleBellmanFord(src, dist):    globalgraph, V, E      # Step 1: Initialize distances from src    # to all other vertices as INFINITE    fori inrange(V):        dist[i] =10**18    dist[src] =0      # Step 2: Relax all edges |V| - 1 times.    # A simple shortest path from src to any    # other vertex can have at-most |V| - 1    # edges    fori inrange(1, V):        forj inrange(E):            u =graph[j][0]            v =graph[j][1]            weight =graph[j][2]            if(dist[u] !=10**18anddist[u] +weight < dist[v]):                dist[v] =dist[u] +weight      # Step 3: check for negative-weight cycles.    # The above step guarantees shortest distances    # if graph doesn't contain negative weight cycle.    # If we get a shorter path, then there    # is a cycle.    fori inrange(E):        u =graph[i][0]        v =graph[i][1]        weight =graph[i][2]        if(dist[u] !=10**18anddist[u] +weight < dist[v]):            returnTrue      returnFalse# Returns true if given graph has negative weight# cycle.    defisNegCycleDisconnected():    globalV, E, graph      # To keep track of visited vertices to avoid    # recomputations.    visited =[0]*V    # memset(visited, 0, sizeof(visited))      # This array is filled by Bellman-Ford    dist =[0]*V      # Call Bellman-Ford for all those vertices    # that are not visited    fori inrange(V):        if(visited[i] ==0):              # If cycle found            if(isNegCycleBellmanFord(i, dist)):                returnTrue              # Mark all vertices that are visited            # in above call.            fori inrange(V):                if(dist[i] !=10**18):                    visited[i] =True    returnFalse    # Driver codeif__name__ =='__main__':      # /* Let us create the graph given in above example */    V =5Â# Number of vertices in graph    E =8Â# Number of edges in graph    graph =[[0, 0, 0] fori inrange(8)]      # add edge 0-1 (or A-B in above figure)    graph[0][0] =0    graph[0][1] =1    graph[0][2] =-1      # add edge 0-2 (or A-C in above figure)    graph[1][0] =0    graph[1][1] =2    graph[1][2] =4      # add edge 1-2 (or B-C in above figure)    graph[2][0] =1    graph[2][1] =2    graph[2][2] =3      # add edge 1-3 (or B-D in above figure)    graph[3][0] =1    graph[3][1] =3    graph[3][2] =2      # add edge 1-4 (or A-E in above figure)    graph[4][0] =1    graph[4][1] =4    graph[4][2] =2      # add edge 3-2 (or D-C in above figure)    graph[5][0] =3    graph[5][1] =2    graph[5][2] =5      # add edge 3-1 (or D-B in above figure)    graph[6][0] =3    graph[6][1] =1    graph[6][2] =1      # add edge 4-3 (or E-D in above figure)    graph[7][0] =4    graph[7][1] =3    graph[7][2] =-3      if(isNegCycleDisconnected()):        print("Yes")    else:        print("No")  # This code is contributed by mohit kumar 29 | 
C#
| // A C# program for Bellman-Ford's single source// shortest path algorithm.usingSystem;usingSystem.Collections.Generic;publicclassGFG {      // A structure to represent a weighted    // edge in graph    publicclassEdge {        publicintsrc, dest, weight;    }      // A structure to represent a connected,    // directed and weighted graph    publicclassGraph {          // V-> Number of vertices,        // E-> Number of edges        publicintV, E;          // Graph is represented as        // an array of edges.        publicEdge[] edge;    }      // Creates a graph with V vertices and E edges    staticGraph createGraph(intV, intE)    {        Graph graph = newGraph();        graph.V = V;        graph.E = E;        graph.edge = newEdge[graph.E];        for(inti = 0; i < graph.E; i++) {            graph.edge[i] = newEdge();        }          returngraph;    }      // The main function that finds shortest distances    // from src to all other vertices using Bellman-    // Ford algorithm. The function also detects    // negative weight cycle    staticboolisNegCycleBellmanFord(Graph graph, intsrc,                                      int[] dist)    {        intV = graph.V;        intE = graph.E;          // Step 1: Initialize distances from src        // to all other vertices as INFINITE        for(inti = 0; i < V; i++)            dist[i] = int.MaxValue;          dist[src] = 0;          // Step 2: Relax all edges |V| - 1 times.        // A simple shortest path from src to any        // other vertex can have at-most |V| - 1        // edges        for(inti = 1; i <= V - 1; i++) {            for(intj = 0; j < E; j++) {                intu = graph.edge[j].src;                intv = graph.edge[j].dest;                intweight = graph.edge[j].weight;                  if(dist[u] != int.MaxValue                    && dist[u] + weight < dist[v])                    dist[v] = dist[u] + weight;            }        }          // Step 3: check for negative-weight cycles.        // The above step guarantees shortest distances        // if graph doesn't contain negative weight cycle.        // If we get a shorter path, then there        // is a cycle.        for(inti = 0; i < E; i++) {            intu = graph.edge[i].src;            intv = graph.edge[i].dest;            intweight = graph.edge[i].weight;              if(dist[u] != int.MaxValue                && dist[u] + weight < dist[v])                returntrue;        }          returnfalse;    }      // Returns true if given graph has negative weight    // cycle.    staticboolisNegCycleDisconnected(Graph graph)    {        intV = graph.V;          // To keep track of visited vertices        // to avoid recomputations.        bool[] visited = newbool[V];          // This array is filled by Bellman-Ford        int[] dist = newint[V];          // Call Bellman-Ford for all those vertices        // that are not visited        for(inti = 0; i < V; i++) {            if(visited[i] == false) {                  // If cycle found                if(isNegCycleBellmanFord(graph, i, dist))                    returntrue;                  // Mark all vertices that are visited                // in above call.                for(intj = 0; j < V; j++)                    if(dist[j] != int.MaxValue)                        visited[j] = true;            }        }        returnfalse;    }      // Driver Code    publicstaticvoidMain(String[] args)    {        intV = 5, E = 8;        Graph graph = createGraph(V, E);          // Add edge 0-1 (or A-B in above figure)        graph.edge[0].src = 0;        graph.edge[0].dest = 1;        graph.edge[0].weight = -1;          // Add edge 0-2 (or A-C in above figure)        graph.edge[1].src = 0;        graph.edge[1].dest = 2;        graph.edge[1].weight = 4;          // Add edge 1-2 (or B-C in above figure)        graph.edge[2].src = 1;        graph.edge[2].dest = 2;        graph.edge[2].weight = 3;          // Add edge 1-3 (or B-D in above figure)        graph.edge[3].src = 1;        graph.edge[3].dest = 3;        graph.edge[3].weight = 2;          // Add edge 1-4 (or A-E in above figure)        graph.edge[4].src = 1;        graph.edge[4].dest = 4;        graph.edge[4].weight = 2;          // Add edge 3-2 (or D-C in above figure)        graph.edge[5].src = 3;        graph.edge[5].dest = 2;        graph.edge[5].weight = 5;          // Add edge 3-1 (or D-B in above figure)        graph.edge[6].src = 3;        graph.edge[6].dest = 1;        graph.edge[6].weight = 1;          // Add edge 4-3 (or E-D in above figure)        graph.edge[7].src = 4;        graph.edge[7].dest = 3;        graph.edge[7].weight = -3;          if(isNegCycleDisconnected(graph))            Console.WriteLine("Yes");        else            Console.WriteLine("No");    }}  // This code is contributed by aashish1995 | 
Javascript
| <script>// A Javascript program for Bellman-Ford's single source// shortest path algorithm.    Â    // A structure to represent a weighted    // edge in graph    class Edge    {        constructor()        {            let src, dest, weight;        }    }    Â    // A structure to represent a connected,    // directed and weighted graph    class Graph    {        constructor()        {            // V-> Number of vertices,            // E-> Number of edges            let V, E;            Â            // Graph is represented as            // an array of edges.            let edge=[];        }    }    Â    // Creates a graph with V vertices and E edges    functioncreateGraph(V,E)    {        let graph = newGraph();        graph.V = V;           graph.E = E;        graph.edge = newArray(graph.E); Â    for(let i = 0; i < graph.E; i++)    {        graph.edge[i] = newEdge();    } Â    returngraph;    }  // The main function that finds shortest distances// from src to all other vertices using Bellman-// Ford algorithm. The function also detects// negative weight cyclefunctionisNegCycleBellmanFord(graph,src,dist){    let V = graph.V;    let E = graph.E;   Â    // Step 1: Initialize distances from src    // to all other vertices as INFINITE    for(let i = 0; i < V; i++)        dist[i] = Number.MAX_VALUE;         Â    dist[src] = 0;   Â    // Step 2: Relax all edges |V| - 1 times.    // A simple shortest path from src to any    // other vertex can have at-most |V| - 1    // edges    for(let i = 1; i <= V - 1; i++)    {        for(let j = 0; j < E; j++)        {            let u = graph.edge[j].src;            let v = graph.edge[j].dest;            let weight = graph.edge[j].weight;           Â            if(dist[u] != Number.MAX_VALUE &&                dist[u] + weight < dist[v])                dist[v] = dist[u] + weight;        }    }   Â    // Step 3: check for negative-weight cycles.    // The above step guarantees shortest distances    // if graph doesn't contain negative weight cycle.    // If we get a shorter path, then there    // is a cycle.    for(let i = 0; i < E; i++)    {        let u = graph.edge[i].src;        let v = graph.edge[i].dest;        let weight = graph.edge[i].weight;       Â        if(dist[u] != Number.MAX_VALUE &&            dist[u] + weight < dist[v])            returntrue;    }   Â    returnfalse;}  // Returns true if given graph has negative weight// cycle.functionisNegCycleDisconnected(graph){    let V = graph.V;     Â    // To keep track of visited vertices    // to avoid recomputations.    let visited = newArray(V);    for(let i=0;i<V;i++)    {        visited[i]=false;    }   Â    // This array is filled by Bellman-Ford    let dist = newArray(V); Â    // Call Bellman-Ford for all those vertices    // that are not visited    for(let i = 0; i < V; i++)    {        if(visited[i] == false)        {             Â            // If cycle found            if(isNegCycleBellmanFord(graph, i, dist))                returntrue;   Â            // Mark all vertices that are visited            // in above call.            for(let j = 0; j < V; j++)                if(dist[j] != Number.MAX_VALUE)                    visited[j] = true;        }    }    returnfalse;}  // Driver Code  let V = 5, E = 8;let graph = createGraph(V, E);  // Add edge 0-1 (or A-B in above figure)graph.edge[0].src = 0;graph.edge[0].dest = 1;graph.edge[0].weight = -1;  // Add edge 0-2 (or A-C in above figure)graph.edge[1].src = 0;graph.edge[1].dest = 2;graph.edge[1].weight = 4;  // Add edge 1-2 (or B-C in above figure)graph.edge[2].src = 1;graph.edge[2].dest = 2;graph.edge[2].weight = 3;  // Add edge 1-3 (or B-D in above figure)graph.edge[3].src = 1;graph.edge[3].dest = 3;graph.edge[3].weight = 2;  // Add edge 1-4 (or A-E in above figure)graph.edge[4].src = 1;graph.edge[4].dest = 4;graph.edge[4].weight = 2;  // Add edge 3-2 (or D-C in above figure)graph.edge[5].src = 3;graph.edge[5].dest = 2;graph.edge[5].weight = 5;  // Add edge 3-1 (or D-B in above figure)graph.edge[6].src = 3;graph.edge[6].dest = 1;graph.edge[6].weight = 1;  // Add edge 4-3 (or E-D in above figure)graph.edge[7].src = 4;graph.edge[7].dest = 3;graph.edge[7].weight = -3;  if(isNegCycleDisconnected(graph))    document.write("Yes");else    document.write("No");    Â  // This code is contributed by patel2127</script> | 
No
Time Complexity: O(V*E), , where V and E are the number of vertices in the graph and edges respectively.
Auxiliary Space: O(V), where V is the number of vertices in the graph.
Related articles:
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!


 
                                     








