Friday, January 10, 2025
Google search engine
HomeLanguagesDecimal Functions in Python | Set 1

Decimal Functions in Python | Set 1

Python in its definition provides certain methods to perform faster decimal floating point arithmetic using the module “decimal”. 
Important operations on Decimals
1. sqrt() :- This function computes the square root of the decimal number.
2. exp() :- This function returns the e^x (exponent) of the decimal number.
 

Python3




# Python code to demonstrate the working of
# sqrt() and exp()
 
# importing "decimal" module to use decimal functions
import decimal
 
# using exp() to compute the exponent of decimal number
a = decimal.Decimal(4.5).exp()
 
# using sqrt() to compute the square root of decimal number
b = decimal.Decimal(4.5).sqrt()
 
# printing the exponent
print ("The exponent of decimal number is : ",end="")
print (a)
 
# printing the square root
print ("The square root of decimal number is : ",end="")
print (b)


Output: 
 

The exponent of decimal number is : 90.01713130052181355011545675
The square root of decimal number is : 2.121320343559642573202533086

3. ln() :- This function is used to compute natural logarithm of the decimal number.
4. log10() :- This function is used to compute log(base 10) of a decimal number.
 

Python3




# Python code to demonstrate the working of
# ln() and log10()
 
# importing "decimal" module to use decimal functions
import decimal
 
# using ln() to compute the natural log of decimal number
a = decimal.Decimal(4.5).ln()
 
# using sqrt() to compute the log10 of decimal number
b = decimal.Decimal(4.5).log10()
 
# printing the natural logarithm
print ("The natural logarithm of decimal number is : ",end="")
print (a)
 
# printing the log10
print ("The log(base 10) of decimal number is : ",end="")
print (b)


Output: 
 

The natural logarithm of decimal number is : 1.504077396776274073373258352
The log(base 10) of decimal number is : 0.6532125137753436793763169118

5. as_tuple() :- Returns the decimal number as tuple containing 3 arguments, sign(0 for +, 1 for -), digits and exponent value.
6. fma(a,b) :- This “fma” stands for fused multiply and add. It computes (num*a)+b from the numbers in argument. No rounding of (num*a) takes place in this function.
Example : 
 

decimal.Decimal(5).fma(2,3) --> (5*2)+3 = 13

 

Python3




# Python code to demonstrate the working of
# as_tuple() and fma()
 
# importing "decimal" module to use decimal functions
import decimal
 
# using as_tuple() to return decimal number as tuple
a = decimal.Decimal(-4.5).as_tuple()
 
# using fma() to compute fused multiply and addition
b = decimal.Decimal(5).fma(2,3)
 
# printing the tuple
print ("The tuple form of decimal number is : ",end="")
print (a)
 
# printing the fused multiple and addition
print ("The fused multiply and addition of decimal number is : ",end="")
print (b)


Output: 
 

The tuple form of decimal number is : DecimalTuple(sign=1, digits=(4, 5), exponent=-1)
The fused multiply and addition of decimal number is : 13

7. compare() :- This function is used to compare decimal numbers. Returns 1 if 1st Decimal argument is greater than 2nd, -1 if 1st Decimal argument is smaller than 2nd and 0 if both are equal.
8. compare_total_mag() :- Compares the total magnitude of decimal numbers. Returns 1 if 1st Decimal argument is greater than 2nd(ignoring sign), -1 if 1st Decimal argument is smaller than 2nd(ignoring sign) and 0 if both are equal(ignoring sign).
 

Python3




# Python code to demonstrate the working of
# compare() and compare_total_mag()
 
# importing "decimal" module to use decimal functions
import decimal
 
# Initializing decimal number
a = decimal.Decimal(9.53)
 
# Initializing decimal number
b = decimal.Decimal(-9.56)
 
# comparing decimal numbers using compare()
print ("The result of comparison using compare() is : ",end="")
print (a.compare(b))
 
# comparing decimal numbers using compare_total_mag()
print ("The result of comparison using compare_total_mag() is : ",end="")
print (a.compare_total_mag(b))


Output: 
 

The result of comparison using compare() is : 1
The result of comparison using compare_total_mag() is : -1

9. copy_abs() :- This function prints the absolute value of decimal argument.
10. copy_negate() :- This function prints the negation of decimal argument.
11. copy_sign() :- This function prints the first argument by copying the sign from 2nd argument.
 

Python3




# Python code to demonstrate the working of
# copy_abs(),copy_sign() and copy_negate()
 
# importing "decimal" module to use decimal functions
import decimal
 
# Initializing decimal number
a = decimal.Decimal(9.53)
 
# Initializing decimal number
b = decimal.Decimal(-9.56)
 
# printing absolute value using copy_abs()
print ("The absolute value using copy_abs() is : ",end="")
print (b.copy_abs())
 
# printing negated value using copy_negate()
print ("The negated value using copy_negate() is : ",end="")
print (b.copy_negate())
 
# printing sign effected value using copy_sign()
print ("The sign effected value using copy_sign() is : ",end="")
print (a.copy_sign(b))


Output: 
 

The absolute value using copy_abs() is : 9.5600000000000004973799150320701301097869873046875
The negated value using copy_negate() is : 9.5600000000000004973799150320701301097869873046875
The sign effected value using copy_sign() is : -9.5299999999999993605115378159098327159881591796875

12. max() :- This function computes the maximum of two decimal numbers.
13. min() :- This function computes the minimum of two decimal numbers.
 

Python3




# Python code to demonstrate the working of
# min() and max()
 
# importing "decimal" module to use decimal functions
import decimal
 
# Initializing decimal number
a = decimal.Decimal(9.53)
 
# Initializing decimal number
b = decimal.Decimal(7.43)
 
# printing minimum of both values
print ("The minimum of two numbers is : ",end="")
print (a.min(b))
 
# printing maximum of both values
print ("The maximum of two numbers is : ",end="")
print (a.max(b))


Output: 
 

The minimum of two numbers is : 7.429999999999999715782905696
The maximum of two numbers is : 9.529999999999999360511537816

 

This article is contributed by Manjeet Singh. If you like Lazyroar and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the Lazyroar main page and help other Geeks.
 

 

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

RELATED ARTICLES

Most Popular

Recent Comments