Pandas Series is a one-dimensional labeled array capable of holding data of any type (integer, string, float, python objects, etc.). The axis labels are collectively called index. Pandas Series is nothing but a column in an excel sheet. In this article, we will see various ways of creating a series using different data types.
Creating Series from list
The list of some values form the series of that values uses list index as series index.
Python
# import pandas as pd import pandas as pd # simple list lst = [ 'G' , 'E' , 'E' , 'K' , 'S' , 'F' , 'O' , 'R' , 'G' , 'E' , 'E' , 'K' , 'S' ] # forming series s = pd.Series(lst) # output print (s) |
Output :
0 G 1 E 2 E 3 K 4 S 5 F 6 O 7 R 8 G 9 E 10 E 11 K 12 S dtype: object
Creating Series from dictionary
Dictionary of some key and value pair for the series of values taking keys as index of series.
Python3
# import pandas as pd import pandas as pd # simple dict dct = { 'G' : 2 , 'E' : 4 , 'K' : 2 , 'S' : 2 , 'F' : 1 , 'O' : 1 , 'R' : 1 } # forming series s = pd.Series(dct) # output print (s) |
Output :
G 2 E 4 K 2 S 2 F 1 O 1 R 1 dtype: int64
Creating Series from Numpy array
The 1-D Numpy array of some values form the series of that values uses array index as series index.
Python3
# import pandas as pd import pandas as pd # import numpy as np import numpy as np # numpy array arr = np.array([ 'G' , 'E' , 'E' , 'K' , 'S' , 'F' , 'O' , 'R' , 'G' , 'E' , 'E' , 'K' , 'S' ]) # forming series s = pd.Series(arr) # output print (s) |
Output :
0 G 1 E 2 E 3 K 4 S 5 F 6 O 7 R 8 G 9 E 10 E 11 K 12 S dtype: object