Given two natural numbers N and M, Create a graph using these two natural numbers using relation that a number is connected to its largest factor other than itself. The task is to find the shortest path between these two numbers after creating a graph.
Examples:
Input: N = 6, M = 18
Output: 6 <–> 3 <–> 9 <–> 18
Explanation:
For N = 6, the connection of graph is:
6 — 3 — 1
For N = 18, the connection of graph is:
18 — 9 — 3 — 1
Combining the above two graphs, the shortest path is given by:
6 — 3 — 9 — 18Input: N = 4, M = 8
Output: 4 <–> 8
Approach: The idea is to find the largest factors of each number other than itself and create a graph by connecting these factors and then find the shortest path between them. Below are the steps:
- Find the largest common factor of M and store it and set it as M.
- Now, until M doesn’t equal to 1 keep repeating the above steps and store the factors generated in an array mfactor[].
- Repeat step 1 and step 2 by taking N as the number and store the factors generated in an array nfactor[].
- Now, traverse both the arrays mfactor[] and mfactor[] and print the shortest path.
Below is the implementation of the above approach:
C++14
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to check the number is // prime or not int isprm( int n) { // Base Cases if (n <= 1) return 0; if (n <= 3) return 1; if (n % 2 == 0 || n % 3 == 0) return 0; // Iterate till [5, sqrt(N)] to // detect primarility of numbers for ( int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return 0; return 1; } // Function to print the shortest path void shortestpath( int m, int n) { // Use vector to store the factor // of m and n vector< int > mfactor, nfactor; // Use map to check if largest common // factor previously present or not map< int , int > fre; // First store m mfactor.push_back(m); fre[m] = 1; while (m != 1) { // Check whether m is prime or not if (isprm(m)) { mfactor.push_back(1); fre[1] = 1; m = 1; } // Largest common factor of m else { for ( int i = 2; i <= sqrt (m); i++) { // If m is divisible by i if (m % i == 0) { // Store the largest // common factor mfactor.push_back(m / i); fre[m / i] = 1; m = (m / i); break ; } } } } // For number n nfactor.push_back(n); while (fre[n] != 1) { // Check whether n is prime if (isprm(n)) { nfactor.push_back(1); n = 1; } // Largest common factor of n else { for ( int i = 2; i <= sqrt (n); i++) { if (n % i == 0) { // Store the largest // common factor nfactor.push_back(n / i); n = (n / i); break ; } } } } // Print the path // Print factors from m for ( int i = 0; i < mfactor.size(); i++) { // To avoid duplicate printing // of same element if (mfactor[i] == n) break ; cout << mfactor[i] << " <--> " ; } // Print the factors from n for ( int i = nfactor.size() - 1; i >= 0; i--) { if (i == 0) cout << nfactor[i]; else cout << nfactor[i] << " <--> " ; } } // Driver Code int main() { // Given N and M int m = 18, n = 19; // Function Call shortestpath(m, n); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to check the number is // prime or not static int isprm( int n) { // Base Cases if (n <= 1 ) return 0 ; if (n <= 3 ) return 1 ; if (n % 2 == 0 || n % 3 == 0 ) return 0 ; // Iterate till [5, Math.sqrt(N)] to // detect primarility of numbers for ( int i = 5 ; i * i <= n; i = i + 6 ) if (n % i == 0 || n % (i + 2 ) == 0 ) return 0 ; return 1 ; } // Function to print the shortest path static void shortestpath( int m, int n) { // Use vector to store the factor // of m and n Vector<Integer> mfactor = new Vector<>(); Vector<Integer> nfactor = new Vector<>(); // Use map to check if largest common // factor previously present or not HashMap<Integer, Integer> fre = new HashMap<>(); // First store m mfactor.add(m); fre.put(m, 1 ); while (m != 1 ) { // Check whether m is prime or not if (isprm(m) != 0 ) { mfactor.add( 1 ); fre.put( 1 , 1 ); m = 1 ; } // Largest common factor of m else { for ( int i = 2 ; i <= Math.sqrt(m); i++) { // If m is divisible by i if (m % i == 0 ) { // Store the largest // common factor mfactor.add(m / i); fre.put(m / i, 1 ); m = (m / i); break ; } } } } // For number n nfactor.add(n); while (fre.containsKey(n) && fre.get(n) != 1 ) { // Check whether n is prime if (isprm(n) != 0 ) { nfactor.add( 1 ); n = 1 ; } // Largest common factor of n else { for ( int i = 2 ; i <= Math.sqrt(n); i++) { if (n % i == 0 ) { // Store the largest // common factor nfactor.add(n / i); n = (n / i); break ; } } } } // Print the path // Print factors from m for ( int i = 0 ; i < mfactor.size(); i++) { // To astatic void duplicate printing // of same element if (mfactor.get(i) == n) break ; System.out.print(mfactor.get(i) + " <--> " ); } // Print the factors from n for ( int i = nfactor.size() - 1 ; i >= 0 ; i--) { if (i == 0 ) System.out.print(nfactor.get(i)); else System.out.print(nfactor.get(i) + " <--> " ); } } // Driver Code public static void main(String[] args) { // Given N and M int m = 18 , n = 19 ; // Function call shortestpath(m, n); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 program for the above approach import math # Function to check the number is # prime or not def isprm(n): # Base Cases if (n < = 1 ): return 0 if (n < = 3 ): return 1 if (n % 2 = = 0 or n % 3 = = 0 ): return 0 # Iterate till [5, sqrt(N)] to # detect primarility of numbers i = 5 while i * i < = n: if (n % i = = 0 or n % (i + 2 ) = = 0 ): return 0 i + = 6 return 1 # Function to print the shortest path def shortestpath(m, n): # Use vector to store the factor # of m and n mfactor = [] nfactor = [] # Use map to check if largest common # factor previously present or not fre = dict .fromkeys( range (n + 1 ), 0 ) # First store m mfactor.append(m) fre[m] = 1 while (m ! = 1 ): # Check whether m is prime or not if (isprm(m)): mfactor.append( 1 ) fre[ 1 ] = 1 m = 1 # Largest common factor of m else : sqt = ( int )(math.sqrt(m)) for i in range ( 2 , sqt + 1 ): # If m is divisible by i if (m % i = = 0 ): # Store the largest # common factor mfactor.append(m / / i) fre[m / / i] = 1 m = (m / / i) break # For number n nfactor.append(n) while (fre[n] ! = 1 ): # Check whether n is prime if (isprm(n)): nfactor.append( 1 ) n = 1 # Largest common factor of n else : sqt = ( int )(math.sqrt(n)) for i in range ( 2 , sqt + 1 ): if (n % i = = 0 ): # Store the largest # common factor nfactor.append(n / / i) n = (n / / i) break # Print the path # Print factors from m for i in range ( len (mfactor)): # To avoid duplicate printing # of same element if (mfactor[i] = = n): break print (mfactor[i], end = " <--> " ) # Print the factors from n for i in range ( len (nfactor) - 1 , - 1 , - 1 ): if (i = = 0 ): print (nfactor[i], end = "") else : print (nfactor[i], end = " <--> " ) # Driver Code if __name__ = = "__main__" : # Given N and M m = 18 n = 19 # Function call shortestpath(m, n) # This code is contributed by chitranayal |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG{ // Function to check the number is // prime or not static int isprm( int n) { // Base Cases if (n <= 1) return 0; if (n <= 3) return 1; if (n % 2 == 0 || n % 3 == 0) return 0; // Iterate till [5, Math.Sqrt(N)] to // detect primarility of numbers for ( int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return 0; return 1; } // Function to print the shortest path static void shortestpath( int m, int n) { // Use vector to store the factor // of m and n List< int > mfactor = new List< int >(); List< int > nfactor = new List< int >(); // Use map to check if largest common // factor previously present or not Dictionary< int , int > fre = new Dictionary< int , int >(); // First store m mfactor.Add(m); fre.Add(m, 1); while (m != 1) { // Check whether m is prime or not if (isprm(m) != 0) { mfactor.Add(1); if (!fre.ContainsKey(1)) fre.Add(1, 1); m = 1; } // Largest common factor of m else { for ( int i = 2; i <= Math.Sqrt(m); i++) { // If m is divisible by i if (m % i == 0) { // Store the largest // common factor mfactor.Add(m / i); if (!fre.ContainsKey(m/i)) fre.Add(m / i, 1); m = (m / i); break ; } } } } // For number n nfactor.Add(n); while (fre.ContainsKey(n) && fre[n] != 1) { // Check whether n is prime if (isprm(n) != 0) { nfactor.Add(1); n = 1; } // Largest common factor of n else { for ( int i = 2; i <= Math.Sqrt(n); i++) { if (n % i == 0) { // Store the largest // common factor nfactor.Add(n / i); n = (n / i); break ; } } } } // Print the path // Print factors from m for ( int i = 0; i < mfactor.Count; i++) { // To astatic void duplicate printing // of same element if (mfactor[i] == n) break ; Console.Write(mfactor[i] + " <--> " ); } // Print the factors from n for ( int i = nfactor.Count - 1; i >= 0; i--) { if (i == 0) Console.Write(nfactor[i]); else Console.Write(nfactor[i] + " <--> " ); } } // Driver Code public static void Main(String[] args) { // Given N and M int m = 18, n = 19; // Function call shortestpath(m, n); } } // This code is contributed by 29AjayKumar |
Javascript
// Javascript program for the above approach // Function to check the number is // prime or not function isprm(n) { // Base Cases if (n <= 1) return 0; if (n <= 3) return 1; if (n % 2 == 0 || n % 3 == 0) return 0; // Iterate till [5, sqrt(N)] to // detect primarility of numbers for (let i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return 0; return 1; } // Function to print the shortest path function shortestpath(m, n) { // Use vector to store the factor // of m and n let mfactor = new Array() let nfactor = new Array() // Use map to check if largest common // factor previously present or not let fre = new Map(); // First store m mfactor.push(m); fre[m] = 1; while (m != 1) { // Check whether m is prime or not if (isprm(m)) { mfactor.push(1); fre[1] = 1; m = 1; } // Largest common factor of m else { for (let i = 2; i <= Math.sqrt(m); i++) { // If m is divisible by i if (m % i == 0) { // Store the largest // common factor mfactor.push(m / i); fre[m / i] = 1; m = (m / i); break ; } } } } // For number n nfactor.push(n); while (fre[n] != 1) { // Check whether n is prime if (isprm(n)) { nfactor.push(1); n = 1; } // Largest common factor of n else { for (let i = 2; i <= Math.sqrt(n); i++) { if (n % i == 0) { // Store the largest // common factor nfactor.push(n / i); n = (n / i); break ; } } } } // Print the path // Print factors from m for (let i = 0; i < mfactor.length; i++) { // To avoid duplicate printing // of same element if (mfactor[i] == n) break ; document.write(mfactor[i] + " <--> " ); } // Print the factors from n for (let i = nfactor.length - 1; i >= 0; i--) { if (i == 0) document.write(nfactor[i]); else document.write(nfactor[i] + " <--> " ); } } // Driver Code // Given N and M let m = 18, n = 19; // Function Call shortestpath(m, n); // This code is contributed by _saurabh_jaiswal |
18 <--> 9 <--> 3 <--> 1 <--> 19
Time Complexity: O(log (max(M, N))
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!