Tuesday, January 14, 2025
Google search engine
HomeData Modelling & AICoxeter method to construct the magic square

Coxeter method to construct the magic square

Given an odd integer N, the task is to find the magic square of order N.

Examples: 

Input: N = 3 
Output: 
6 1 8 
7 5 3 
2 9 4
Input: N = 5 
Output: 
15 8 1 24 17 
16 14 7 5 23 
22 20 13 6 4 
3 21 19 12 10 
9 2 25 18 11  

Approach Put the value 1 in the middle of the first row. Let the position be (i, j).  

  1. Now move up one cell and move left one cell. While moving up or left, if we go beyond the square’s boundary, then consider a box on the opposite side of the square. Let (row, col) is the position.
  2. If the value of the magic square at (row, col) is empty, then (i, j) <– (row, col).
  3. If the magic[row][col] is not empty, then move down from position (i, j) to the next row by incrementing i by 1. But, while moving down, if we go beyond the square’s boundary, then consider a box on the opposite side of the square.
  4. Insert next higher number in the magic square at position (i, j).
  5. Repeat through step 1 till all the squares are filled.

C++




// C++ implementation of the approach
#include<bits/stdc++.h>
using namespace std;
const int MAX = 10;
 
// Function to print the generated square
void print(int mat[MAX][MAX], int n)
{
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            cout << " " << mat[i][j];
        }
        cout << '\n';
    }
}
 
// Function to generate the magic
// square of order n
void magic_square(int magic[MAX][MAX], int n)
{
    // Position of the first value
    int i = 0;
    int j = (n - 1) / 2;
 
    // First value is placed
    // in the magic square
    magic[i][j] = 1;
 
    for (int k = 2; k <= n * n; k++) {
 
        // Up position
        int row = (i - 1 < 0) ? (n - 1) : (i - 1);
 
        // Left position
        int col = (j - 1 < 0) ? (n - 1) : (j - 1);
 
        // If no item is present
        if (magic[row][col] == 0) {
 
            // Move up and left
            i = row, j = col;
        }
 
        // Otherwise
        else {
 
            // Move downwards
            i = (i + 1) % n;
        }
 
        // Place the next value
        magic[i][j] = k;
    }
}
 
// Driver code
int main()
{
    int magic[MAX][MAX] = { 0 };
    int n = 3;
 
    if (n % 2 == 1) {
 
        // Generate the magic square
        magic_square(magic, n);
 
        // Print the magic square
        print(magic, n);
    }
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
    final static int MAX = 10;
     
    // Function to print the generated square
    static void print(int mat[][], int n)
    {
        for (int i = 0; i < n; i++)
        {
            for (int j = 0; j < n; j++)
            {
                System.out.print(mat[i][j] + " ");
            }
            System.out.println();
        }
    }
     
    // Function to generate the magic
    // square of order n
    static void magic_square(int magic[][], int n)
    {
        // Position of the first value
        int i = 0;
        int j = (n - 1) / 2;
     
        // First value is placed
        // in the magic square
        magic[i][j] = 1;
     
        for (int k = 2; k <= n * n; k++)
        {
     
            // Up position
            int row = (i - 1 < 0) ?
                          (n - 1) : (i - 1);
     
            // Left position
            int col = (j - 1 < 0) ?
                          (n - 1) : (j - 1);
     
            // If no item is present
            if (magic[row][col] == 0)
            {
     
                // Move up and left
                i = row; j = col;
            }
     
            // Otherwise
            else
            {
     
                // Move downwards
                i = (i + 1) % n;
            }
     
            // Place the next value
            magic[i][j] = k;
        }
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int magic[][] = new int[MAX][MAX];
         
        int n = 3;
     
        if (n % 2 == 1)
        {
     
            // Generate the magic square
            magic_square(magic, n);
     
            // Print the magic square
            print(magic, n);
        }
    }
}
 
// This code is contributed by AnkitRai01


Python 3




# Python 3 implementation of the approach
MAX = 10
 
# Function to print the generated square
def printf(mat, n):
    for i in range(n):
        for j in range(n):
            print(mat[i][j], end = " ")
 
        print("\n", end = "")
 
# Function to generate the magic
# square of order n
def magic_square(magic,n):
     
    # Position of the first value
    i = 0
    j = (n - 1) // 2
 
    # First value is placed
    # in the magic square
    magic[i][j] = 1
 
    for k in range(2, n * n + 1, 1):
         
        # Up position
        if(i - 1 < 0):
            row = (n - 1)
        else:
            row = (i - 1)
 
        # Left position
        if(j - 1 < 0):
            col = (n - 1)
        else:
            col = (j - 1)
 
        # If no item is present
        if (magic[row][col] == 0):
         
            # Move up and left
            i = row
            j = col
 
        # Otherwise
        else:
             
            # Move downwards
            i = (i + 1) % n
 
        # Place the next value
        magic[i][j] = k
 
# Driver code
if __name__ == '__main__':
    magic = [[0 for i in range(MAX)]
                for j in range(MAX)]
    n = 3
 
    if (n % 2 == 1):
         
        # Generate the magic square
        magic_square(magic, n)
 
        # Print the magic square
        printf(magic, n)
 
# This code is contributed by Surendra_Gangwar


C#




// C# implementation of the approach
using System;
     
class GFG
{
    static int MAX = 10;
     
    // Function to print the generated square
    static void print(int [,]mat, int n)
    {
        for (int i = 0; i < n; i++)
        {
            for (int j = 0; j < n; j++)
            {
                Console.Write(mat[i, j] + " ");
            }
            Console.WriteLine();
        }
    }
     
    // Function to generate the magic
    // square of order n
    static void magic_square(int [,]magic, int n)
    {
        // Position of the first value
        int i = 0;
        int j = (n - 1) / 2;
     
        // First value is placed
        // in the magic square
        magic[i, j] = 1;
     
        for (int k = 2; k <= n * n; k++)
        {
     
            // Up position
            int row = (i - 1 < 0) ?
                          (n - 1) : (i - 1);
     
            // Left position
            int col = (j - 1 < 0) ?
                          (n - 1) : (j - 1);
     
            // If no item is present
            if (magic[row, col] == 0)
            {
     
                // Move up and left
                i = row; j = col;
            }
     
            // Otherwise
            else
            {
     
                // Move downwards
                i = (i + 1) % n;
            }
     
            // Place the next value
            magic[i, j] = k;
        }
    }
     
    // Driver code
    public static void Main(String[] args)
    {
        int [,]magic = new int[MAX, MAX];
         
        int n = 3;
     
        if (n % 2 == 1)
        {
     
            // Generate the magic square
            magic_square(magic, n);
     
            // Print the magic square
            print(magic, n);
        }
    }
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript implementation of the approach
 
var MAX = 10;
 
// Function to print the generated square
function print( mat, n)
{
    for (var i = 0; i < n; i++) {
        for (var j = 0; j < n; j++) {
            document.write(mat[i][j]+" ");
        }
        document.write("<br>");
    }
}
 
// Function to generate the magic
// square of order n
function magic_square(magic, n)
{
    // Position of the first value
    var i = 0;
    var j = parseInt((n - 1) / 2);
 
    // First value is placed
    // in the magic square
    magic[i][j] = 1;
 
    for (var k = 2; k <= n * n; k++) {
 
        // Up position
        var row = (i - 1 < 0) ? (n - 1) : (i - 1);
 
        // Left position
        var col = (j - 1 < 0) ? (n - 1) : (j - 1);
 
        // If no item is present
        if (magic[row][col] == 0) {
 
            // Move up and left
            i = row, j = col;
        }
 
        // Otherwise
        else {
 
            // Move downwards
            i = (i + 1) % n;
        }
 
        // Place the next value
        magic[i][j] = k;
    }
}
 
// Driver code
var magic = Array.from(Array(MAX), ()=> Array(MAX).fill(0));
var n = 3;
if (n % 2 == 1) {
    // Generate the magic square
    magic_square(magic, n);
    // Print the magic square
    print(magic, n);
}
 
 
</script>


Output: 

6   1   8
7   5   3 
2   9   4

 

Time Complexity: O(N ^ 2).
Auxiliary Space: O(N ^ 2). 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments