Wednesday, January 22, 2025
Google search engine
HomeData Modelling & AICount ways to split string into K Substrings starting with even digit...

Count ways to split string into K Substrings starting with even digit and min length M

Given a string S of length N consisting of digits from ‘0’ to ‘9’ .The task is to determine the total number of possible ways to partition the string into K substrings such that :

  • Each substring has a minimum length of M (M>=2).
  • Substring must start with an even digit number and end with an odd digit number.

Examples:

Input: N = 9, M = 2, k = 3, S = ‘432387429’
Output: 3
Explanation: Following are valid partitions of the string S
43|23|87429, 4323|87|429, 43|2387|429

Input: N = 6, M = 3, k = 2, S = ‘546521’
Output: 0
Explanation: There is no way to partition the given string         

Approach: The given problem can be recursively solved by 

Finding every substring from starting which satisfies the given condition and computing the number of ways to split.

Follow the steps mentioned below to implement the idea:

  • Declare a variable (say ans) and initialize to 0.
  • Suppose we have to split the given string into X parts starting from ith index then, consider all the prefixes of length at least M starting from ith index 
    • If the prefix satisfies the given condition, recursively call the function starting from (current prefix length + i)th index to calculate the total number of ways to split the remaining string into X-1 parts and add it to ans.
  • If the value of X is 1 then consider the whole string if its length is greater than M. Otherwise return 0.
  • If the current index reaches the end of the string then return 0.
  • Return the variable storing the answer.

Below is the implementation of the above approach.

C++




// C++ code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count possible ways of splitting
int SplitString(int i, int N, int K, int M, string& s)
{
    int Firstchar = s[0] - '0';
    int Lastchar = s[N - 1] - '0';
    if (Firstchar % 2 != 0 || Lastchar % 2 != 1) {
        cout << 0 << endl;
    }
    if (i == N)
        return 0;
    if (K == 1) {
        int Remchar = N - i;
        if (Remchar >= M)
            return 1;
        return 0;
    }
    int ans = 0;
    int length = 0;
 
    // Loop to check for all possible partition
    for (int j = i; j < N - 1; j++) {
        length++;
        int CurrentNum = s[j] - '0';
        int NextNum = s[j + 1] - '0';
        if (length >= M && CurrentNum % 2 == 1) {
            if (NextNum % 2 == 0) {
                ans += SplitString(j + 1, N, K - 1, M, s);
            }
        }
    }
    return ans;
}
 
// Driver code
int main()
{
    int N = 9, M = 2, K = 3;
    string S = "432387429";
 
    // Function call
    cout << SplitString(0, N, K, M, S) << endl;
    return 0;
}


Java




// Java code to implement the approach
import java.util.*;
 
class GFG
{
 
  // Function to count possible ways of splitting
  static int SplitString(int i, int N, int K, int M,
                         String s)
  {
    int Firstchar = s.charAt(i) - '0';
    int Lastchar = s.charAt(N - 1) - '0';
    if (Firstchar % 2 != 0 || Lastchar % 2 != 1) {
      return 0;
    }
    if (i == N)
      return 0;
    if (K == 1) {
      int Remchar = N - i;
      if (Remchar >= M)
        return 1;
      return 0;
    }
    int ans = 0;
    int length = 0;
 
    // Loop to check for all possible partition
    for (int j = i; j < N - 1; j++) {
      length++;
      int CurrentNum = s.charAt(j) - '0';
      int NextNum = s.charAt(j + 1) - '0';
      if (length >= M && CurrentNum % 2 == 1) {
        if (NextNum % 2 == 0) {
          ans += SplitString(j + 1, N, K - 1, M,
                             s);
        }
      }
    }
    return ans;
  }
 
  // Driver code
  public static void main(String[] args)
  {
    int N = 9, M = 2, K = 3;
    String S = "432387429";
 
    // Function call
    System.out.println(SplitString(0, N, K, M, S));
  }
}
 
// This code is contributed by karandeep1234.


Python3




# Python code to implement the approach
 
# Function to count possible ways of splitting
def SplitString(i, N, K, M, s):
    Firstchar = ord(s[i])-0
    Lastchar = ord(s[N-1])-0
    if (Firstchar % 2 is not 0) or (Lastchar % 2 is not 1):
        return 0
    if (i == N):
        return 0
    if (K == 1):
        Remchar = N-i
        if (Remchar >= M):
            return 1
        return 0
 
    ans = 0
    length = 0
 
    # Loop to check for all possible partition
    for j in range(i, N-1):
        length += 1
        CurrentNum = ord(s[j])-0
        NextNum = ord(s[j+1])-0
        if(length >= M) and (CurrentNum % 2 is 1):
            if NextNum % 2 is 0:
                ans += SplitString(j+1, N, K-1, M, S)
 
    return ans
 
 
N, M, K = 9, 2, 3
S = "432387429"
 
# Function call
print(SplitString(0, N, K, M, S))
 
# This code is contributed by lokeshmvs21.


C#




// C# code to implement the approach
using System;
 
public class GFG
{
  public static int SplitString(int i, int N, int K, int M, string s)
  {
    int Firstchar = s[0] - '0';
    int Lastchar = s[N - 1] - '0';
    if (((Firstchar % 2) != 0) || ((Lastchar % 2) != 1)) {
      Console.WriteLine(0);
    }
    if (i == N)
      return 0;
    if (K == 1) {
      int Remchar = N - i;
      if (Remchar >= M)
        return 1;
      return 0;
    }
    int ans = 0;
    int length = 0;
 
    // Loop to check for all possible partition
    for (int j = i; j < N - 1; j++) {
      length++;
      int CurrentNum = s[j] - '0';
      int NextNum = s[j + 1] - '0';
      if (length >= M && CurrentNum % 2 == 1) {
        if (NextNum % 2 == 0) {
          ans += SplitString(j + 1, N, K - 1, M, s);
        }
      }
    }
    return ans;
  }
 
  public static void Main(string[] args)
  {
    int N = 9, M = 2, K = 3;
    string S = "432387429";
 
    // Function call
    Console.WriteLine(SplitString(0, N, K, M, S));
  }
}
 
// This code is contributed by ksam24000


Javascript




<script>
    // JavaScrip tcode for the above approach
 
  // Function to count possible ways of splitting
  function SplitString(i, N, K, M, s)
  {
    let Firstchar = s.charAt(i) - '0';
    let Lastchar = s.charAt(N - 1) - '0';
    if (Firstchar % 2 != 0 || Lastchar % 2 != 1) {
      return 0;
    }
    if (i == N)
      return 0;
    if (K == 1) {
      let Remchar = N - i;
      if (Remchar >= M)
        return 1;
      return 0;
    }
    let ans = 0;
    let length = 0;
 
    // Loop to check for all possible partition
    for (let j = i; j < N - 1; j++) {
      length++;
      let CurrentNum = s.charAt(j) - '0';
      let NextNum = s.charAt(j + 1) - '0';
      if (length >= M && CurrentNum % 2 == 1) {
        if (NextNum % 2 == 0) {
          ans += SplitString(j + 1, N, K - 1, M,
                             s);
        }
      }
    }
    return ans;
  }
 
    // Driver code
     
    let N = 9, M = 2, K = 3;
    let S = "432387429";
 
    // Function call
    document.write(SplitString(0, N, K, M, S));
 
// This code is contributed by code_hunt.
</script>


Output

3

Time Complexity: O(N*N*K)
Total number of possible states in this problem is N*K as 

  • There are two variables, the starting index and the given value of K. 
  • So for every index for a given K we are iterating the whole string,  
  • Thus for every possible N*K state, we are iterating N times.

Auxiliary Space: O(1)

Efficient Approach using Memoization:

If noticed carefully, you can see the above approach has overlapping sub-problems. So it can be optimized using dynamic programming. The current index and K can uniquely identify each state.

Follow the below steps to implement the idea:

  • Write a recursive function as shown above.
  • Initialize a 2D array (say dp[][]) to uniquely identify the states:
    • If a state is already calculated return the value for that.
    • Otherwise, call the recursive function.
  • For each recursive call, store the value in the array before returning.
  • The final value returned from the function is the required answer.

Below is the implementation of the above approach.

C++




// C++ code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
int dp[1001][1001];
 
// Function to find the possible ways to split
int SplitString(int i, int N, int K, int M, string& s)
{
    if (i == N)
        return 0;
    if (K == 1) {
        int Remchar = N - i;
        if (Remchar >= M)
            return 1;
        return 0;
    }
    if (dp[i][K] != -1)
        return dp[i][K];
    int ans = 0;
    int length = 0;
    for (int j = i; j < N - 1; j++) {
        length++;
        int CurrentNum = s[j] - '0';
        int NextNum = s[j + 1] - '0';
        if (length >= M && CurrentNum % 2 == 1) {
            if (NextNum % 2 == 0) {
                ans += SplitString(j + 1, N, K - 1, M, s);
            }
        }
    }
    return dp[i][K] = ans;
}
 
// Driver code
int main()
{
    int N = 9, M = 2, K = 3;
    string S = "432387429";
    memset(dp, -1, sizeof(dp));
    int Firstchar = S[0] - '0';
    int Lastchar = S[N - 1] - '0';
    if (Firstchar % 2 != 0 || Lastchar % 2 != 1) {
        cout << 0 << endl;
    }
    else {
 
        // Function call
        cout << SplitString(0, N, K, M, S) << endl;
    }
    return 0;
}


Java




// Java code to implement the approach
import java.io.*;
import java.util.*;
 
public class GFG {
 
  // Function to find the possible ways to split
  public static int SplitString(int i, int N, int K,
                                int M, String s)
  {
    int[][] dp = new int[1001][1001];
     
    for(int m=0;m<1001;m++){
        for(int j=0;j<1001;j++){
            dp[m][j] = -1;
        }
    }
     
    if (i == N)
      return 0;
    if (K == 1) {
      int Remchar = N - i;
      if (Remchar >= M)
        return 1;
      return 0;
    }
    if (dp[i][K] != -1)
      return dp[i][K];
    int ans = 0;
    int length = 0;
    for (int j = i; j < N - 1; j++) {
      length++;
      int CurrentNum = s.charAt(j) - '0';
      int NextNum = s.charAt(j + 1) - '0';
      if (length >= M && CurrentNum % 2 == 1) {
        if (NextNum % 2 == 0) {
          ans += SplitString(j + 1, N, K - 1, M,
                             s);
        }
      }
    }
    return dp[i][K] = ans;
  }
 
  // Driver code
  public static void main(String[] args)
  {
    int N = 9, M = 2, K = 3;
    String S = "432387429";
 
    int Firstchar = S.charAt(0) - '0';
    int Lastchar = S.charAt(N - 1) - '0';
    if (Firstchar % 2 != 0 || Lastchar % 2 != 1) {
      System.out.println(0);
    }
    else {
 
      // Function call
      System.out.println(SplitString(0, N, K, M, S));
    }
  }
}
 
// This code is contributed by aarohirai2616.


Python3




class GFG :
    # Function to find the possible ways to split
    @staticmethod
    def  SplitString( i,  N,  K,  M,  s) :
        dp = [[0] * (1001) for _ in range(1001)]
        m = 0
        while (m < 1001) :
            j = 0
            while (j < 1001) :
                dp[m][j] = -1
                j += 1
            m += 1
        if (i == N) :
            return 0
        if (K == 1) :
            Remchar = N - i
            if (Remchar >= M) :
                return 1
            return 0
        if (dp[i][K] != -1) :
            return dp[i][K]
        ans = 0
        length = 0
        j = i
        while (j < N - 1) :
            length += 1
            CurrentNum = ord(s[j]) - ord('0')
            NextNum = ord(s[j + 1]) - ord('0')
            if (length >= M and CurrentNum % 2 == 1) :
                if (NextNum % 2 == 0) :
                    ans = ans + GFG.SplitString(j + 1, N, K - 1, M, s)
            j += 1
            dp[i][K] = ans
        return dp[i][K]
    # Driver code
    @staticmethod
    def main( args) :
        N = 9
        M = 2
        K = 3
        S = "432387429"
        Firstchar = ord(S[0]) - ord('0')
        Lastchar = ord(S[N - 1]) - ord('0')
        if (Firstchar % 2 != 0 or Lastchar % 2 != 1) :
            print(0)
        else :
            # Function call
            print(GFG.SplitString(0, N, K, M, S))
     
 
if __name__=="__main__":
    GFG.main([])
     
    # This code is contributed by aadityaburujwale.


C#




// C# code to implement the approach
using System;
 
public class GFG {
  public static int SplitString(int i, int N, int K,
                                int M, string s,
                                int[, ] dp)
  {
    int Firstchar = s[0] - '0';
    int Lastchar = s[N - 1] - '0';
    if (((Firstchar % 2) != 0)
        || ((Lastchar % 2) != 1)) {
      Console.WriteLine(0);
    }
    if (i == N)
      return 0;
    if (K == 1) {
      int Remchar = N - i;
      if (Remchar >= M)
        return 1;
      return 0;
    }
    if (dp[i, K] != -1)
      return dp[i, K];
    int ans = 0;
    int length = 0;
 
    // Loop to check for all possible partition
    for (int j = i; j < N - 1; j++) {
      length++;
      int CurrentNum = s[j] - '0';
      int NextNum = s[j + 1] - '0';
      if (length >= M && CurrentNum % 2 == 1) {
        if (NextNum % 2 == 0) {
          ans += SplitString(j + 1, N, K - 1, M,
                             s, dp);
        }
      }
    }
    return dp[i, K] = ans;
  }
 
  public static void Main(string[] args)
  {
    int N = 9, M = 2, K = 3;
    string S = "432387429";
    int[, ] dp = new int[1001, 1001];
 
    // Loop to initially filled the
    // table with -1
    for (int i = 0; i < 1001; i++)
      for (int j = 0; j < 1001; j++)
        dp[i, j] = -1;
 
    // Function call
    Console.WriteLine(SplitString(0, N, K, M, S, dp));
  }
}
 
// This code is contributed by garg28harsh.


Javascript




// Javascript code to implement the approach
 
// Function to find the possible ways to split
function SplitString( i,  N,  K, M, s,dp)
{
    if (i == N)
        return 0;
    if (K == 1) {
        let Remchar = N - i;
        if (Remchar >= M)
            return 1;
        return 0;
    }
    if (dp[i][K] != -1)
        return dp[i][K];
    let ans = 0;
    let length = 0;
    for (let j = i; j < N - 1; j++) {
        length++;
        let CurrentNum = parseInt(s[j]);
        let NextNum = parseInt(s[j+1]);
        if (length >= M && CurrentNum % 2 == 1) {
            if (NextNum % 2 == 0) {
                ans += SplitString(j + 1, N, K - 1, M, s,dp);
            }
        }
    }
    return dp[i][K] = ans;
}
 
// Driver code
    let N = 9, M = 2, K = 3;
    let S = "432387429";
    let dp = new Array(1001);
    for(let i=0;i<1001;i++)
        dp[i]= new Array(1001);
    for(let i=0;i<1001;i++)
    for(let j=0;j<1001;j++)
    dp[i][j]=-1;
    let Firstchar = S[0] - '0';
    let Lastchar = S[N - 1] - '0';
    if (Firstchar % 2 != 0 || Lastchar % 2 != 1) {
        console.log(0);
    }
    else {
 
        // Function call
        console.log(SplitString(0, N, K, M, S,dp));
    }
     
    // This code is contributed by garg28harsh.


Output

3

Time Complexity:  O(N*K)                                         
Auxiliary Space:  O(N*K)

Efficient approach : Using DP Tabulation method ( Iterative approach )

The approach to solve this problem is same but DP tabulation(bottom-up) method is better then Dp + memorization(top-down) because memorization method needs extra stack space of recursion calls.

Steps to solve this problem :

  • Create a table to store the solution of the subproblems.
  • Initialize the table with base cases
  • Fill up the table iteratively
  • Return the final solution

Implementation :

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
int dp[1001][1001];
 
// Function to find the possible ways to split
int SplitString(int N, int K, int M, string& s)
{
    // Initialize the base cases
    for (int i = 0; i <= N; i++) {
        for (int j = 0; j <= K; j++) {
            // If the length of string is N, then no split is possible
            if (i == N)
                dp[i][j] = 0;
            else if (j == 1) {
                 // If K = 1, then only one split is allowed
                int Remchar = N - i;
                if (Remchar >= M)
                    // If remaining characters in string >= M,
                    // then only one split is possible
                    dp[i][j] = 1;
                else
                    dp[i][j] = 0;
            } else {
                dp[i][j] = -1;
            }
        }
    }
 
    // Fill the DP table
    for (int j = 2; j <= K; j++) {
        for (int i = 0; i < N; i++) {
            int ans = 0;
            int length = 0;
            for (int k = i; k < N - 1; k++) {
                // Incrementing the length of current substring
                length++;
                 // Converting current character to integer
                int CurrentNum = s[k] - '0';
                int NextNum = s[k + 1] - '0';
                 // Checking if the current substring satisfies the given conditions
                if (length >= M && CurrentNum % 2 == 1 && NextNum % 2 == 0) {
                    // Adding the number of ways to split the remaining
                    // string after the current substring into j-1 parts
                    ans += dp[k + 1][j - 1];
                }
            }
            dp[i][j] = ans;
        }
    }
     
    // final answer
    return dp[0][K];
}
 
// Driver code
int main()
{
    int N = 9, M = 2, K = 3;
    string S = "432387429";
    int Firstchar = S[0] - '0';
    int Lastchar = S[N - 1] - '0';
    if (Firstchar % 2 != 0 || Lastchar % 2 != 1) {
        cout << 0 << endl;
    }
    else {
 
        // Function call
        cout << SplitString(N, K, M, S) << endl;
    }
    return 0;
}
 
// this code is contributed by bhardwajji


Java




import java.util.*;
 
public class Main {
 
    static int[][] dp = new int[1001][1001];
 
    // Function to find the possible ways to split
    static int SplitString(int N, int K, int M, String s) {
        // Initialize the base cases
        for (int i = 0; i <= N; i++) {
            for (int j = 0; j <= K; j++) {
                // If the length of string is N, then no split is possible
                if (i == N)
                    dp[i][j] = 0;
                else if (j == 1) {
                    // If K = 1, then only one split is allowed
                    int Remchar = N - i;
                    if (Remchar >= M)
                        // If remaining characters in string >= M,
                        // then only one split is possible
                        dp[i][j] = 1;
                    else
                        dp[i][j] = 0;
                } else {
                    dp[i][j] = -1;
                }
            }
        }
 
        // Fill the DP table
        for (int j = 2; j <= K; j++) {
            for (int i = 0; i < N; i++) {
                int ans = 0;
                int length = 0;
                for (int k = i; k < N - 1; k++) {
                    // Incrementing the length of current substring
                    length++;
                    // Converting current character to integer
                    int CurrentNum = s.charAt(k) - '0';
                    int NextNum = s.charAt(k + 1) - '0';
                    // Checking if the current substring satisfies the given conditions
                    if (length >= M && CurrentNum % 2 == 1 && NextNum % 2 == 0) {
                        // Adding the number of ways to split the remaining
                        // string after the current substring into j-1 parts
                        ans += dp[k + 1][j - 1];
                    }
                }
                dp[i][j] = ans;
            }
        }
 
        // final answer
        return dp[0][K];
    }
 
    // Driver code
    public static void main(String[] args) {
        int N = 9, M = 2, K = 3;
        String S = "432387429";
        int Firstchar = S.charAt(0) - '0';
        int Lastchar = S.charAt(N - 1) - '0';
        if (Firstchar % 2 != 0 || Lastchar % 2 != 1) {
            System.out.println(0);
        } else {
            // Function call
            System.out.println(SplitString(N, K, M, S));
        }
    }
}


Python3




# Python 3 program for the above approach
 
# Function to find the possible ways to split
def SplitString(N, K, M, s):
    dp = [[-1 for j in range(K + 1)] for i in range(N + 1)]
 
    # Initialize the base cases
    for i in range(N + 1):
        for j in range(K + 1):
            # If the length of string is N, then no split is possible
            if i == N:
                dp[i][j] = 0
            elif j == 1:
                # If K = 1, then only one split is allowed
                Remchar = N - i
                if Remchar >= M:
                    # If remaining characters in string >= M,
                    # then only one split is possible
                    dp[i][j] = 1
                else:
                    dp[i][j] = 0
            else:
                dp[i][j] = -1
 
    # Fill the DP table
    for j in range(2, K + 1):
        for i in range(N):
            ans = 0
            length = 0
            for k in range(i, N - 1):
                # Incrementing the length of current substring
                length += 1
                # Converting current character to integer
                CurrentNum = int(s[k])
                NextNum = int(s[k + 1])
                # Checking if the current substring satisfies the given conditions
                if length >= M and CurrentNum % 2 == 1 and NextNum % 2 == 0:
                    # Adding the number of ways to split the remaining
                    # string after the current substring into j-1 parts
                    ans += dp[k + 1][j - 1]
            dp[i][j] = ans
 
    # final answer
    return dp[0][K]
 
# Driver code
if __name__ == '__main__':
    N = 9
    M = 2
    K = 3
    S = "432387429"
    Firstchar = int(S[0])
    Lastchar = int(S[N - 1])
    if Firstchar % 2 != 0 or Lastchar % 2 != 1:
        print(0)
    else:
        # Function call
        print(SplitString(N, K, M, S))


C#




using System;
 
class GFG {
    static int MAX = 1001;
 
    // DP table
    static int[, ] dp = new int[MAX, MAX];
 
    // Function to find the possible ways to split
    static int SplitString(int N, int K, int M, string s)
    {
        // Initialize the base cases
        for (int i = 0; i <= N; i++) {
            for (int j = 0; j <= K; j++) {
                // If the length of string is N, then no
                // split is possible
                if (i == N)
                    dp[i, j] = 0;
                else if (j == 1) {
                    // If K = 1, then only one split is
                    // allowed
                    int Remchar = N - i;
                    if (Remchar >= M)
                        // If remaining characters in string
                        // >= M, then only one split is
                        // possible
                        dp[i, j] = 1;
                    else
                        dp[i, j] = 0;
                }
                else {
                    dp[i, j] = -1;
                }
            }
        }
 
        // Fill the DP table
        for (int j = 2; j <= K; j++) {
            for (int i = 0; i < N; i++) {
                int ans = 0;
                int length = 0;
                for (int k = i; k < N - 1; k++) {
                    // Incrementing the length of current
                    // substring
                    length++;
                    // Converting current character to
                    // integer
                    int CurrentNum
                        = (int)Char.GetNumericValue(s[k]);
                    int NextNum = (int)Char.GetNumericValue(
                        s[k + 1]);
                    // Checking if the current substring
                    // satisfies the given conditions
                    if (length >= M && CurrentNum % 2 == 1
                        && NextNum % 2 == 0) {
                        // Adding the number of ways to
                        // split the remaining string after
                        // the current substring into j-1
                        // parts
                        ans += dp[k + 1, j - 1];
                    }
                }
                dp[i, j] = ans;
            }
        }
 
        // final answer
        return dp[0, K];
    }
 
    // Driver code
    public static void Main()
    {
        int N = 9, M = 2, K = 3;
        string S = "432387429";
        int Firstchar = (int)Char.GetNumericValue(S[0]);
        int Lastchar = (int)Char.GetNumericValue(S[N - 1]);
        if (Firstchar % 2 != 0 || Lastchar % 2 != 1) {
            Console.WriteLine(0);
        }
        else {
 
            // Function call
            Console.WriteLine(SplitString(N, K, M, S));
        }
    }
}
// This code is contributed by sarojmcy2e


Javascript




// JavaScript program for the above approach
 
let dp = [];
 
// Function to find the possible ways to split
function SplitString(N, K, M, s) {
// Initialize the base cases
for (let i = 0; i <= N; i++) {
dp[i] = new Array(K + 1);
for (let j = 0; j <= K; j++) {
// If the length of string is N, then no split is possible
if (i == N)
dp[i][j] = 0;
else if (j == 1) {
// If K = 1, then only one split is allowed
let Remchar = N - i;
if (Remchar >= M)
// If remaining characters in string >= M,
// then only one split is possible
dp[i][j] = 1;
else
dp[i][j] = 0;
} else {
dp[i][j] = -1;
}
}
}
// Fill the DP table
for (let j = 2; j <= K; j++) {
    for (let i = 0; i < N; i++) {
        let ans = 0;
        let length = 0;
        for (let k = i; k < N - 1; k++) {
            // Incrementing the length of current substring
            length++;
             // Converting current character to integer
            let CurrentNum = parseInt(s[k]);
            let NextNum = parseInt(s[k + 1]);
             // Checking if the current substring satisfies the given conditions
            if (length >= M && CurrentNum % 2 == 1 && NextNum % 2 == 0) {
                // Adding the number of ways to split the remaining
                // string after the current substring into j-1 parts
                ans += dp[k + 1][j - 1];
            }
        }
        dp[i][j] = ans;
    }
}
 
// final answer
return dp[0][K];
}
 
// Driver code
let N = 9, M = 2, K = 3;
let S = "432387429";
let Firstchar = parseInt(S[0]);
let Lastchar = parseInt(S[N - 1]);
if (Firstchar % 2 != 0 || Lastchar % 2 != 1) {
console.log(0);
}
else {
// Function call
console.log(SplitString(N, K, M, S));
}


Output:

3

Time Complexity:  O(N*K)                            
Auxiliary Space:  O(N*K)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments