Saturday, January 11, 2025
Google search engine
HomeData Modelling & AICount ways to represent N as sum of powers of 2

Count ways to represent N as sum of powers of 2

Given an integer N, the task is to count the number of ways to represent N as the sum of powers of 2.

Examples:

Input: N = 4
Output: 4
Explanation: All possible ways to obtains sum N using powers of 2 are  {4, 2+2, 1+1+1+1, 2+1+1}.

Input: N = 5
Output: 4
Explanation: All possible ways to obtains sum N using powers of 2 are  {4 + 1, 2+2 + 1, 1+1+1+1 + 1, 2+1+1 + 1}

Naive Approach: The simplest approach to solve the problem is to generate all powers of 2 whose values are less than N and print all combinations to represent the sum N.

Efficient Approach: To optimize the above approach, the idea is to use recursion. Define a function f(N, K) which represents the number of ways to express N as a sum of powers of 2 with all the numbers having power less than or equal to k where K ( = log2(N)) is the maximum power of 2 which satisfies 2K ? N.

If (power(2, K) ? N) :
     f(N, K) = f(N – power(2, K), K) + f(N, K – 1) //to check if power(2, k) can be one of the number.    
Otherwise:
      f(N, K)=f(N, K – 1)
Base cases :

  • If (N = 0) f(N, K)=1 (Only 1 possible way exists to represent N)
  • If (k==0) f(N, K)=1 (Only 1 possible way exists to represent N by taking 20)

Below is the implementation of the above approach:

C++




// C++ program for above implementation
#include <bits/stdc++.h>
using namespace std;
int numberOfWays(int n, int k)
{
 
    // Base Cases
    if (n == 0)
        return 1;
 
    if (k == 0)
        return 1;
 
    // Check if 2^k can be used as
    // one of the numbers or not
    if (n >= pow(2, k)) {
        int curr_val = pow(2, k);
        return numberOfWays(n - curr_val, k)
               + numberOfWays(n, k - 1);
    }
    // Otherwise
    else
 
        // Count number of  ways to
        // N using 2 ^ k - 1
        return numberOfWays(n, k - 1);
}
 
// Driver Code
int main()
{
    int n = 4;
    int k = log2(n);
 
    cout << numberOfWays(n, k) << endl;
}


Java




// Java program to implement
// the above approach
import java.util.*;
class GFG
{
static int numberOfWays(int n, int k)
{
 
    // Base Cases
    if (n == 0)
        return 1;
    if (k == 0)
        return 1;
 
    // Check if 2^k can be used as
    // one of the numbers or not
    if (n >= (int)Math.pow(2, k))
    {
        int curr_val = (int)Math.pow(2, k);
        return numberOfWays(n - curr_val, k)
               + numberOfWays(n, k - 1);
    }
   
    // Otherwise
    else
 
        // Count number of  ways to
        // N using 2 ^ k - 1
        return numberOfWays(n, k - 1);
}
 
// Driver code
public static void main(String[] args)
{
    int n = 4;
    int k = (int)(Math.log(n) / Math.log(2));
     System.out.println(numberOfWays(n, k));
}
}
 
// This code is contributed by susmitakundugoaldanga.


Python3




# Python3 program for above implementation
from math import log2
def numberOfWays(n, k):
 
    # Base Cases
    if (n == 0):
        return 1
    if (k == 0):
        return 1
 
    # Check if 2^k can be used as
    # one of the numbers or not
    if (n >= pow(2, k)):
        curr_val = pow(2, k)
        return numberOfWays(n - curr_val, k) + numberOfWays(n, k - 1)
     
    # Otherwise
    else:
 
        # Count number of  ways to
        # N using 2 ^ k - 1
        return numberOfWays(n, k - 1)
 
# Driver Code
if __name__ == '__main__':
    n = 4
    k = log2(n)
 
    print(numberOfWays(n, k))
 
# This code is contributed by mohit kumar 29


C#




// C# program to implement
// the above approach
using System;
class GFG
{
static int numberOfWays(int n, int k)
{
 
    // Base Cases
    if (n == 0)
        return 1;
    if (k == 0)
        return 1;
 
    // Check if 2^k can be used as
    // one of the numbers or not
    if (n >= (int)Math.Pow(2, k))
    {
        int curr_val = (int)Math.Pow(2, k);
        return numberOfWays(n - curr_val, k)
               + numberOfWays(n, k - 1);
    }
   
    // Otherwise
    else
 
        // Count number of  ways to
        // N using 2 ^ k - 1
        return numberOfWays(n, k - 1);
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 4;
    int k = (int)(Math.Log(n) / Math.Log(2));
     Console.WriteLine(numberOfWays(n, k));
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// JavaScript program for above implementation
 
function numberOfWays(n, k)
{
 
    // Base Cases
    if (n == 0)
        return 1;
 
    if (k == 0)
        return 1;
 
    // Check if 2^k can be used as
    // one of the numbers or not
    if (n >= Math.pow(2, k)) {
        let curr_val = Math.pow(2, k);
        return numberOfWays(n - curr_val, k)
            + numberOfWays(n, k - 1);
    }
    // Otherwise
    else
 
        // Count number of ways to
        // N using 2 ^ k - 1
        return numberOfWays(n, k - 1);
}
 
// Driver Code
 
    let n = 4;
    let k = Math.log2(n);
 
    document.write(numberOfWays(n, k) + "<br>");
 
// This code is contributed by Mayank Tyagi
 
</script>


Output: 

4

 

Time Complexity: O((logN+K)K ), where K is log2(N)
Auxiliary Space: O(1)

Another Efficient Approach ( using DP) : First we iterate all values of power of 2<= N , starting from 1. Then , we will find value of big problem using value of small sub-problems .

Below is the implementation of the above approach:

C++




// C++ program for above implementation
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the number of ways to represent
// n as the power of 2
int numberOfWays(int n)
{
   // Initialize an array dp with size n+1
   int dp[n+1] = {0};
   
   // Base case- there is only 1 way to represent 0
   // as a sum of powers of 2
   dp[0] = 1;
 
   // Iterate all powers of 2 starting from 1
   for (int i = 1; i <= n; i = i*2)
   {
        // Iterate through all numbers from 1 to n
       for (int j = i; j <= n; j++)
       {
        // Using sub-problems that is already calculated to find the
        // number of ways to represent j as a sum of powers of 2
           dp[j] += dp[j-i];
       }
   }
 
   // Return the number of ways to represent
   // n as a sum of powers of 2
   return dp[n];
}
 
//Drive code
int main() {
   int n=4;
   
   //Function call
   cout << "Number of ways: "<< numberOfWays(n) << endl;
   return 0;
}
 
// This code is contributed by nikhilsainiofficial546


Java




// Java program for above implementation
import java.util.*;
 
public class Main {
 
    // Function to count the number of ways to represent
    // n as the power of 2
    static int numberOfWays(int n)
    {
        // Initialize an array dp with size n+1
        int dp[] = new int[n + 1];
 
        // Base case- there is only 1 way to represent 0
        // as a sum of powers of 2
        dp[0] = 1;
 
        // Iterate all powers of 2 starting from 1
        for (int i = 1; i <= n; i = i * 2) {
            // Iterate through all numbers from 1 to n
            for (int j = i; j <= n; j++) {
                // Using sub-problems that is already
                // calculated to find the number of ways to
                // represent j as a sum of powers of 2
                dp[j] += dp[j - i];
            }
        }
 
        // Return the number of ways to represent
        // n as a sum of powers of 2
        return dp[n];
    }
 
    // Drive code
    public static void main(String[] args)
    {
        int n = 4;
 
        // Function call
        System.out.println("Number of ways: "
                           + numberOfWays(n));
    }
}


Python3




# Python3 program for above implementation
 
# Function to count the number of ways to represent
# n as the power of 2
def numberOfWays(n):
    # Initialize an array dp with size n+1
    dp = [0 for i in range(n+1)]
   
    # Base case- there is only 1 way to represent 0
    # as a sum of powers of 2
    dp[0] = 1
 
    # Iterate all powers of 2 starting from 1
    i = 1
    while i <= n:
       
        # Iterate through all numbers from 1 to n
        j = i
        while j <= n:
           
            # Using sub-problems that is already calculated to find the
            # number of ways to represent j as a sum of powers of 2
            dp[j] += dp[j-i]
            j += 1
        i *= 2
 
    # Return the number of ways to represent
    # n as a sum of powers of 2
    return dp[n]
 
# Drive code
if __name__ == '__main__':
    n = 4
   
    # Function call
    print("Number of ways:", numberOfWays(n))
 
# This code is contributed by nikhilsainiofficial546


C#




// C# program for the above approach
using System;
 
public class GFG
{
    // Function to count the number of ways to represent
    // n as the power of 2
    static int NumberOfWays(int n)
    {
        // Initialize an array dp with size n+1
        int[] dp = new int[n + 1];
            // Base case- there is only 1 way to represent 0
        // as a sum of powers of 2
        dp[0] = 1;
     
        // Iterate all powers of 2 starting from 1
        for (int i = 1; i <= n; i = i * 2)
        {
            // Iterate through all numbers from 1 to n
            for (int j = i; j <= n; j++)
            {
                // Using sub-problems that is already
                // calculated to find the number of ways to
                // represent j as a sum of powers of 2
                dp[j] += dp[j - i];
            }
        }
     
        // Return the number of ways to represent
        // n as a sum of powers of 2
        return dp[n];
    }
 
    // Drive code
    public static void Main(string[] args)
    {
        int n = 4;
     
        // Function call
        Console.WriteLine("Number of ways: " + NumberOfWays(n));
    }
}
 
// This code is contributed by sdeadityasharma


Javascript




// Function to count the number of ways to represent
// n as the power of 2
function numberOfWays(n) {
    // Initialize an array dp with size n+1
    let dp = new Array(n+1).fill(0);
   
    // Base case- there is only 1 way to represent 0
    // as a sum of powers of 2
    dp[0] = 1;
 
    // Iterate all powers of 2 starting from 1
    let i = 1;
    while (i <= n) {
       
        // Iterate through all numbers from 1 to n
        let j = i;
        while (j <= n) {
           
            // Using sub-problems that is already calculated to find the
            // number of ways to represent j as a sum of powers of 2
            dp[j] += dp[j-i];
            j += 1;
        }
        i *= 2;
    }
 
    // Return the number of ways to represent
    // n as a sum of powers of 2
    return dp[n];
}
 
// Driver code
let n = 4;
   
// Function call
console.log("Number of ways:", numberOfWays(n));


Output

Number of ways: 4

Time Complexity: O(N*logN), logN time to iterate all powers of 2 that is <=N
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments