Saturday, December 28, 2024
Google search engine
HomeData Modelling & AICount ways to remove objects such that exactly M equidistant objects remain

Count ways to remove objects such that exactly M equidistant objects remain

Given an integer N, representing objects placed adjacent to each other, the task is to count the number of ways to remove objects such that after their removal, exactly M objects are left and the distance between each adjacent object is equal.

Examples:

Input: N = 5, M = 3
Output: 4
Explanation:
Let the initial arrangement be A1 A2 A3 A4 A5.
The following arrangements are possible:

  1. A1 A2 A3 _ _
  2. _ A2 A3 A4 _
  3. _ _ A3 A4 A5
  4. A1_ A3_ A5

Therefore, the total count of possible arrangements is 4.

Input: N = 2, M = 1
Output: 2

Approach: The idea is based on the observation that an arrangement of M objects with D adjacent spaces takes (M + (M – 1) * D) length, say L. For this arrangement, there are (N – L + 1) options. Therefore, the idea is to iterate over D from 0 till L ? N and find the number of ways accordingly.
Follow the steps below to solve the problem:

  • If the value of M is 1, then the number of possible arrangements is N. Therefore, print the value of N.
  • Otherwise, perform the following steps:
    • Initialize two variables, say ans to 0, to store the total number of required arrangements.
    • Iterate a loop using a variable D. Perform the following steps:
      • Store the total length required for the current value of D in a variable, say L as M + (M – 1) * D.
      • If the value of L is greater than N, then break out of the loop.
      • Otherwise, update the number of arrangements by adding the value (N – L + 1) to the variable ans.
  • After completing the above steps, print the value of ans as the total number of arrangements.

Below is the implementation of the above approach.

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the number of ways of
// removing objects such that after removal,
// exactly M equidistant objects remain
void waysToRemove(int n, int m)
{
    // Store the resultant
    // number of arrangements
    int ans = 0;
 
    // Base Case: When only
    // 1 object is left
    if (m == 1) {
 
        // Print the result and return
        cout << n;
        return;
    }
 
    // Iterate until len <= n and increment
    // the distance in each iteration
    for (int d = 0; d >= 0; d++) {
 
        // Total length if adjacent
        // objects are d distance apart
        int len = m + (m - 1) * d;
 
        // If len > n
        if (len > n)
            break;
 
        // Update the number of ways
        ans += (n - len) + 1;
    }
 
    // Print the result
    cout << ans;
}
 
// Driver Code
int main()
{
    int N = 5, M = 3;
    waysToRemove(N, M);
 
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
 
class GFG{
 
// Function to count the number of ways of
// removing objects such that after removal,
// exactly M equidistant objects remain
static void waysToRemove(int n, int m)
{
     
    // Store the resultant
    // number of arrangements
    int ans = 0;
 
    // Base Case: When only
    // 1 object is left
    if (m == 1)
    {
         
        // Print the result and return
        System.out.println(n);
        return;
    }
 
    // Iterate until len <= n and increment
    // the distance in each iteration
    for(int d = 0; d >= 0; d++)
    {
         
        // Total length if adjacent
        // objects are d distance apart
        int len = m + (m - 1) * d;
 
        // If len > n
        if (len > n)
            break;
 
        // Update the number of ways
        ans += (n - len) + 1;
    }
 
    // Print the result
    System.out.println(ans);
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 5, M = 3;
     
    waysToRemove(N, M);
}
}
 
// This code is contributed by Dharanendra L V.


Python3




# Python3 program for the above approach
 
# Function to count the number of ways of
# removing objects such that after removal,
# exactly M equidistant objects remain
def waysToRemove(n, m):
 
    # Store the resultant
    # number of arrangements
    ans = 0
 
    # Base Case: When only
    # 1 object is left
    if (m == 1):
         
        # Print the result and return
        print(n)
        return
 
    d = 0
     
    # Iterate until len <= n and increment
    # the distance in each iteration
    while d >= 0:
         
        # Total length if adjacent
        # objects are d distance apart
        length = m + (m - 1) * d
 
        # If length > n
        if (length > n):
            break
 
        # Update the number of ways
        ans += (n - length) + 1
         
        d += 1
 
    # Print the result
    print(ans)
 
# Driver Code
if __name__ == "__main__" :
 
    N = 5
    M = 3
     
    waysToRemove(N, M)
 
# This code is contributed by AnkThon


C#




// C# program for the above approach
using System;
class GFG
{
     
// Function to count the number of ways of
// removing objects such that after removal,
// exactly M equidistant objects remain
static void waysToRemove(int n, int m)
{
     
    // Store the resultant
    // number of arrangements
    int ans = 0;
 
    // Base Case: When only
    // 1 object is left
    if (m == 1)
    {
         
        // Print the result and return
        Console.Write(n);
        return;
    }
 
    // Iterate until len <= n and increment
    // the distance in each iteration
    for(int d = 0; d >= 0; d++)
    {
         
        // Total length if adjacent
        // objects are d distance apart
        int len = m + (m - 1) * d;
 
        // If len > n
        if (len > n)
            break;
 
        // Update the number of ways
        ans += (n - len) + 1;
    }
 
    // Print the result
    Console.Write(ans);
}
 
 
// Driver code
static void Main()
{
    int N = 5, M = 3;
    waysToRemove(N, M);
}
}
 
// This code is contributed by sanjoy_62.


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to count the number of ways of
// removing objects such that after removal,
// exactly M equidistant objects remain
function waysToRemove( n, m)
{
    // Store the resultant
    // number of arrangements
    var ans = 0;
 
    // Base Case: When only
    // 1 object is left
    if (m == 1) {
 
        // Print the result and return
        document.write( n);
        return;
    }
 
    // Iterate until len <= n and increment
    // the distance in each iteration
    for (var d = 0; d >= 0; d++) {
 
        // Total length if adjacent
        // objects are d distance apart
        var len = m + (m - 1) * d;
 
        // If len > n
        if (len > n)
            break;
 
        // Update the number of ways
        ans += (n - len) + 1;
    }
 
    // Print the result
    document.write( ans);
}
 
// Driver Code
var N = 5, M = 3;
waysToRemove(N, M);
 
</script>


Output: 

4

 

Time Complexity: O(N)
Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
27 Apr, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments