Given N and K, the task is to form an array where each element represents the number of ways to reach each index i (1 ? i ? N) by taking only the steps where step length is divisible by incremented K i.e., first step length should be divisible by K. Next, step length should be divisible by K + 1 and so on.
Note: Step length is the difference between the values of the current index and the index at which we are going to reach.
Examples:
Input: N = 8, K = 1
Output: {1, 1, 2, 2, 3, 4, 5, 6 }
Explanation: Ways to reach point 1: [0, 1] –> (1-0) divisible by 1
Ways to reach point 2: [0, 2] —> (2 – 0) divisible by 2
Ways to reach point 3: [0, 1, 3], [0, 3] –> in the first way (1 – 0) divisible by K = 1, (3 – 1) divisible by K = 2, in the 2nd way (3 – 0) is divisible by 1 taking the first direct step as multiple of 1.
Ways to reach point 4: [0, 2, 4], [0, 4]
Ways to reach point 5: [0, 1, 5], [0, 3, 5], [0, 5]
Ways to reach point 6: [0, 1, 3, 6], [0, 2, 6], [0, 4, 6], [0, 6]
Ways to reach point 7: [0, 2, 4, 7], [0, 1, 7], [0, 3, 7], [0, 5, 7], [0, 7]
Ways to reach point 8: [0, 3, 5, 8], [0, 1, 5, 8], [0, 2, 8], [0, 4, 8], [0, 6, 8], [0, 8].Input: N = 10, K = 2
Output: {0, 1, 0, 1, 1, 1, 1, 2, 2, 2 }
Approach: Implement the idea below to solve the problem:
The approach is based on the DP where we maintain three DP arrays dp1, dp2, res where dp1[i] stores the number of ways of reaching i by taking upto (K – 1) the multiple steps which is the previous number of ways to reach the ith step. dp2[i] represents the number of ways of reaching i by taking up to kth multiple steps and the res[i] array stores the sum of dp2[i] at each K.
Follow these steps to solve the above problem:
- Initialize min_d which is the position of starting at each step which is at a K.
- Initialize the dp1, dp2, and res.
- Assign dp1[0] = 1 as a base case i.e., the only way to reach 0.
- Initialize min_d = K.
- Iterate from i = K while min_d ? N i.e., the step length should not cross n.
- Fill the dp2 array using the relation dp2[j] = dp2[j – i] + dp1[j – i];
- Assign dp1 as dp2 which will be used in the next iteration
- Make all the elements of dp2 to 0 to be used in the next iteration
- Move min_d to the minimum possible next starting point from where the step can be started for the next K + 1.
- Print the res[] array.
Below is the implementation of the above approach:
C++
// C++ code for the above approach #include <bits/stdc++.h> using namespace std; Â
// Function to find the number of ways to // reach the destination i such that each // step should be divisible by k and next // step divisible k + 1 void findNumways( int n, int k) { Â
    // Initialize min_d which is the     // position of start at each step which     // is at a k     int min_d; Â
    vector< int > dp1(n + 1), dp2(n + 1), res(n + 1); Â
    // dp1[0] = 1 as a base case     dp1[0] = 1; Â
    // Initialize min_d = k     min_d = k; Â
    // Iterate from i =k while min_d <= n i.e     // the step length should not cross n     for ( int i = k; min_d <= n; i++) { Â
        // Fill the dp2 array         for ( int j = min_d; j <= n; j++) { Â
            dp2[j] = dp2[j - i] + dp1[j - i];             res[j] = res[j] + dp2[j];         }         // Assign dp1 as dp2 which would be         // used in the next iteartion         dp1 = dp2; Â
        // Make all the elements of dp2 to         // 0 to be used in next iteration         for ( int j = 0; j <= n; j++) { Â
            dp2[j] = 0;         } Â
        // Move min_d to the minimum         // possible next starting point         // from where the step can be         // started for next k + 1.         min_d = min_d + i + 1;     } Â
    // Print the res[] array.     for ( int i = 1; i <= n; i++) { Â
        cout << res[i] << " " ;     } } Â
// Driver function int main() { Â
    int N = 8, K = 1; Â
    // Function call     findNumways(N, K);     return 0; } |
Java
// Java code for the above approach import java.util.*; Â
public class Main { // Function to find the number of ways to // reach the destination i such that each // step should be divisible by k and next // step divisible k + 1 static void findNumWays( int n, int k) { // Initialize min_d which is the // position of start at each step which // is at a k int min_d = k; int [] dp1 = new int [n + 1 ]; int [] dp2 = new int [n + 1 ]; int [] res = new int [n + 1 ]; Â Â // dp1[0] = 1 as a base case dp1[ 0 ] = 1 ; Â
// Iterate from i =k while min_d <= n i.e // the step length should not cross n for ( int i = k; i <= n; i++) { Â Â for ( int j = min_d; j <= n; j++) { Â Â Â Â dp2[j] = dp2[j - i] + dp1[j - i]; Â Â Â Â res[j] = res[j] + dp2[j]; Â Â } Â Â dp1 = dp2; Â Â dp2 = new int [n + 1 ]; Â Â min_d = min_d + i + 1 ; } Â
// Print the res[] array. System.out.println(Arrays.toString(Arrays.copyOfRange(res, 1 , res.length))); } Â
// Driver function public static void main(String[] args) { int N = 8 ; int K = 1 ; Â Â // Function call findNumWays(N, K); } } Â
//This code is contributed by shivamsharma215 |
Python3
# Function to find the number of ways to # reach the destination i such that each # step should be divisible by k and next # step divisible k + 1 def findNumWays(n: int , k: int ):     # Initialize min_d which is the     # position of start at each step which     # is at a k     min_d = k     dp1 = [ 0 ] * (n + 1 )     dp2 = [ 0 ] * (n + 1 )     res = [ 0 ] * (n + 1 ) Â
    # dp1[0] = 1 as a base case     dp1[ 0 ] = 1 Â
    # Iterate from i =k while min_d <= n i.e     # the step length should not cross n     for i in range (k, n + 1 , 1 ):         for j in range (min_d, n + 1 ):             dp2[j] = dp2[j - i] + dp1[j - i]             res[j] = res[j] + dp2[j]         dp1 = dp2         dp2 = [ 0 ] * (n + 1 )         min_d = min_d + i + 1 Â
    # Print the res[] array.     print (res[ 1 :]) Â
# Driver function if __name__ = = "__main__" : Â Â Â Â N = 8 Â Â Â Â K = 1 Â
    # Function call     findNumWays(N, K) Â
#This code is contributed by ik_9 |
C#
// C# code for the above approach Â
using System; Â
public class GFG { Â
    // Function to find the number of ways to reach the     // destination i such that each step should be divisible     // by k and next step divisible k + 1     static void FindNumWays( int n, int k)     {         // Initialize min_d which is the position of start         // at each step which is at a k         int min_d = k;         int [] dp1 = new int [n + 1];         int [] dp2 = new int [n + 1];         int [] res = new int [n + 1];         // dp1[0] = 1 as a base case         dp1[0] = 1; Â
        // Iterate from i =k while min_d <= n i.e the step         // length should not cross n         for ( int i = k; i <= n; i++) {             for ( int j = min_d; j <= n; j++) {                 dp2[j] = dp2[j - i] + dp1[j - i];                 res[j] = res[j] + dp2[j];             }             dp1 = dp2;             dp2 = new int [n + 1];             min_d = min_d + i + 1;         } Â
        // Print the res[] array.         for ( int i = 1; i <= n; i++) {             Console.Write(res[i] + " " );         }     } Â
    static public void Main()     { Â
        // Code         int N = 8;         int K = 1;         // Function call         FindNumWays(N, K);     } } Â
// This code is contributed by karthik |
Javascript
// Function to find the number of ways to // reach the destination i such that each // step should be divisible by k and next // step divisible k + 1 function findNumways(n, k) { Â
    // Initialize min_d which is the     // position of start at each step which     // is at a k     let min_d; Â
    let dp1 = Array(n + 1).fill(0);     let dp2 = Array(n + 1).fill(0);     let res = Array(n + 1).fill(0); Â
    // dp1[0] = 1 as a base case     dp1[0] = 1; Â
    // Initialize min_d = k     min_d = k; Â
    // Iterate from i =k while min_d <= n i.e     // the step length should not cross n     for (let i = k; min_d <= n; i++) { Â
        // Fill the dp2 array         for (let j = min_d; j <= n; j++) { Â
            dp2[j] = dp2[j - i] + dp1[j - i];             res[j] = res[j] + dp2[j];         }         // Assign dp1 as dp2 which would be         // used in the next iteartion         dp1 = dp2.slice(); Â
        // Make all the elements of dp2 to         // 0 to be used in next iteration         for (let j = 0; j <= n; j++) { Â
            dp2[j] = 0;         } Â
        // Move min_d to the minimum         // possible next starting point         // from where the step can be         // started for next k + 1.         min_d = min_d + i + 1;     } Â
    // Print the res[] array.     for (let i = 1; i <= n; i++) { Â
        console.log(res[i] + " " );     } } Â
// Driver function function main() { Â
    let N = 8, K = 1; Â
    // Function call     findNumways(N, K); } Â
main(); Â
//code by ksam24000 |
1 1 2 2 3 4 5 6
Time Complexity: O(N * K)Â
Auxiliary Space: O(N)
Related Articles:
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!