Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AICount ways to form Triplet of consecutive integers having the given numbers

Count ways to form Triplet of consecutive integers having the given numbers

Given an integer N (N ? 3), two distinct numbers X and Y, the task is to find the maximum number of possible ways by which a third drawn number (the third number lies in range [1, N]) can make a triplet of consecutive with given two numbers. Also, print the triplets.

Examples:

Input: N = 3, X = 2,  Y = 3
Output:1
1 2 3
Explanation: There is only 1 way to make consecutive series of X and Y with 
3rd drawn number which is 1.

Input: N = 5, X = 2, Y = 5
Output: 0
Explanation: There are no possible ways to make form a triplet
of consecutive numbers having 2 and 5 in the triplet.

Approach: To solve the problem follow the below idea:

 The problem can be solved by observing absolute difference between X and Y. There will be three cases on the basis of difference between X and Y, Which are explained below.

Observation of Possible cases:

Consider N = 5 for all inputs and X and Y are defined for each case separately.

Case 1: When the absolute difference between X and Y is 1: 

There will be three types of cases for the difference equal to 1. In the first case, If Min(X, Y) is equal to 1 and in other cases, When 
Max(X, Y) = N.

  • When Min(X, Y) = 1 Then there will be only 1 possible case, Let X = 2, Y = 1.So, the consecutive array will be = {1, 2, 3} 
  • When Max(X, Y) = N Then there will be only 1 possible case, Let X = 5, Y = 4.So,  the consecutive array will be = {3, 4, 5}
  • For the rest of the cases: The rest of the cases excluding the above two discussed sub-cases will have two possible ways of making a consecutive array. Let X =2 and Y = 3.Then, there are two consecutive arrays are possible {1, 2, 3} and (2, 3, 4).

Case 2: When the absolute difference between X and Y is 2:

There will be only one possible case. Let X  = 5 and Y = 3, Then only the occurrence of 4 can make a consecutive array = {3, 4, 5} in which the third drawn number will be mean of X and Y.

Case 3: When the absolute difference between X and Y is greater than 2: There will be no possible case by which you can make a consecutive array with X and Y.  

Follow the steps to solve the problem:

  • Obtain the absolute difference between X and Y.
  • If the absolute difference is equal to 2 then the third number will be the mean of X and Y as discussed in Case 2.
  • If the absolute difference is equal to 1, Then only for corner cases there will be one possible consecutive array as discussed in Case 1, Rest of the cases will have two consecutive arrays.
  • If the absolute difference is greater than 2. Then, there will no possible consecutive array for such cases.

Below is the implementation of the above approach:

C++




// C++ code to implement the approach
#include <bits/stdc++.h>
using namespace std;
 
void findTriplet(int X, int Y, int N)
{
    // Array initialized to hold
    // consecutive array numbers
    int arr[3] = { 0 };
 
    // Condition when absolute
    // difference between X and Y is 2
    if (abs(X - Y) == 2) {
 
        // Printing possible number
        // of cases
        cout << "1\n";
        arr[0] = X;
        arr[2] = Y;
        arr[1] = (X + Y) / 2;
 
        // Printing consecutive
        // array elements
        cout << arr[0] << "  " << arr[1] << "  " << arr[2]
             << "\n";
    }
 
    // Condition when absolute
    // difference between X and Y is 1
    else if (abs(X - Y) == 1) {
 
        // If one from X and Y is
        // equal to 1
        if (min(X, Y) == 1) {
 
            // Printing possible
            // number of cases
            cout << "1\n";
            arr[0] = 1;
            arr[1] = max(X, Y);
            arr[2] = max(X, Y) + 1;
 
            // Printing consecutive
            // array elements
            cout << arr[0] << "  " << arr[1] << "  "
                 << arr[2] << "\n";
        }
        else if (max(X, Y) == N) {
 
            // Printing possible
            // number of cases
            cout << "1\n";
            arr[0] = min(X, Y) - 1;
            arr[1] = min(X, Y);
            arr[2] = max(X, Y);
 
            // Printing consecutive
            // array elements
            cout << arr[0] << " " << arr[1] << " " << arr[2]
                 << "\n";
        }
 
        // For cases when neither X
        // and nor Y is not equal
        // to 1 or N.
        else {
 
            // Printing possible cases
            cout << "2\n";
 
            // Values of consecutive
            // numbers for first case
            arr[0] = min(X, Y) - 1;
            arr[1] = min(X, Y);
            arr[2] = max(X, Y);
 
            // Printing consecutive
            // array numbers
            cout << arr[0] << " " << arr[1] << " " << arr[2]
                 << "\n";
 
            // Values of consecutive
            // numbers for second case
            arr[0] = min(X, Y);
            arr[1] = max(X, Y);
            arr[2] = max(X, Y) + 1;
 
            // Printing consecutive
            // array numbers
            cout << arr[0] << " " << arr[1] << " " << arr[2]
                 << "\n";
        }
    }
 
    // When difference between X and Y
    // is greater than 2
    else {
        cout << "0\n";
    }
}
 
// Driver Code
int main()
{
    // Input value of N
    int N = 3;
 
    // input value of X and Y
    int X = 2, Y = 1;
    findTriplet(X, Y, N);
    return 0;
}
 
// This code is contributed by Rohit Pradhan


Java




// Java code to implement the approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
public class GFG {
 
    // Driver function
    public static void main(String[] args)
    {
 
        // Input value of N
        int N = 3;
 
        // input value of X and Y
        int X = 2, Y = 1;
        findTriplet(X, Y, N);
    }
 
    static void findTriplet(int X, int Y, int N)
    {
        // Array initialized to hold
        // consecutive array numbers
        int[] arr = new int[3];
 
        // Condition when absolute
        // difference between X and Y is 2
        if (Math.abs(X - Y) == 2) {
 
            // Printing possible number
            // of cases
            System.out.println(1);
            arr[0] = X;
            arr[2] = Y;
            arr[1] = (X + Y) / 2;
 
            // Printing consecutive
            // array elements
            System.out.println(arr[0] + "  " + arr[1] + "  "
                               + arr[2]);
        }
 
        // Condition when absolute
        // difference between X and Y is 1
        else if (Math.abs(X - Y) == 1) {
 
            // If one from X and Y is
            // equal to 1
            if (Math.min(X, Y) == 1) {
 
                // Printing possible
                // number of cases
                System.out.println(1);
                arr[0] = 1;
                arr[1] = Math.max(X, Y);
                arr[2] = Math.max(X, Y) + 1;
 
                // Printing consecutive
                // array elements
                System.out.println(arr[0] + "  " + arr[1]
                                   + "  " + arr[2]);
            }
            else if (Math.max(X, Y) == N) {
 
                // Printing possible
                // number of cases
                System.out.println(1);
                arr[0] = Math.min(X, Y) - 1;
                arr[1] = Math.min(X, Y);
                arr[2] = Math.max(X, Y);
 
                // Printing consecutive
                // array elements
                System.out.println(arr[0] + " " + arr[1]
                                   + " " + arr[2]);
            }
 
            // For cases when neither X
            // and nor Y is not equal
            // to 1 or N.
            else {
 
                // Printing possible cases
                System.out.println(2);
 
                // Values of consecutive
                // numbers for first case
                arr[0] = Math.min(X, Y) - 1;
                arr[1] = Math.min(X, Y);
                arr[2] = Math.max(X, Y);
 
                // Printing consecutive
                // array numbers
                System.out.println(arr[0] + " " + arr[1]
                                   + " " + arr[2]);
 
                // Values of consecutive
                // numbers for second case
                arr[0] = Math.min(X, Y);
                arr[1] = Math.max(X, Y);
                arr[2] = Math.max(X, Y) + 1;
 
                // Printing consecutive
                // array numbers
                System.out.println(arr[0] + " " + arr[1]
                                   + " " + arr[2]);
            }
        }
 
        // When difference between X and Y
        // is greater than 2
        else {
            System.out.println(0);
        }
    }
}


Python3




# Python code to implement the approach
def findTriplet(X,Y,N):
   
    # Array initialized to hold consecutive array numbers
    arr = [0,0,0]
     
    # Condition when absolute difference between X and Y is 2
    if(abs(X-Y) == 2):
        print(1)
         
        # Printing possible number of cases
        arr[0] = X
        arr[2] = Y
        arr[1] = (X + Y)//2
         
        # Printing consecutive array elements
        print(arr[0],end=' ')
        print(arr[1],end=' ')
        print(arr[2])
         
    # Condition when absolute difference between X and Y is 1
    elif(abs(X-Y) == 1):
       
        # If one from X and Y is equal to 1
        if(X == 1 or Y == 1):
           
            # Printing possible number of cases
            print(1)
            arr[0] = 1
            if(X > Y):
                arr[1] = X
            else:
                arr[1] = Y
            arr[2] = arr[1] + 1
             
            # Printing consecutive array elements
            print(arr[0],end=' ')
            print(arr[1],end=' ')
            print(arr[2])
        elif(X == N or Y == N):
           
            # Printing possible number of cases
            print(1)
            if(X > Y):
                arr[0] = Y - 1
            else:
                arr[0] = X - 1
            arr[1] = arr[0] + 1
            arr[2] = X + Y - arr[1]
             
            # Printing consecutive array elements
            print(arr[0],end=' ')
            print(arr[1],end=' ')
            print(arr[2])
             
        # For cases when neither X and nor Y is not equal to 1 or N.
        else:
           
            # Printing possible cases
            print(2)
             
            # Values of consecutive numbers for first case
            if(X > Y):
                arr[0] = Y - 1
            else:
                arr[0] = X - 1
            arr[1] = arr[0] + 1
            arr[2] = X + Y - arr[1]
             
            # Printing consecutive array numbers
            print(arr[0],end = ' ')
            print(arr[1],end = ' ')
            print(arr[2])
             
            # Values of consecutive numbers for second case
            if(X > Y):
                arr[0] = Y
                arr[1] = X
                arr[2] = X + 1
            else:
                arr[0] = X
                arr[1] = Y
                arr[2] = Y + 1
                 
            # Printing consecutive array numbers
            print(arr[0],end=' ')
            print(arr[1],end=' ')
            print(arr[2])
             
    # When difference between X and Y is greater than 2
    else:
        print(0)
             
# Driver Code
if __name__ == "__main__":
   
    # Input value of N
    N = 3
     
    # input value of X and Y
    X = 2
    Y = 1
    findTriplet(X,Y,N)
     
    # This code is contributed by ajaymakvana.


C#




// C# code to implement the above approach
using System;
public class GFG
{
 
  // Driver function
  public static void Main(string[] args)
  {
 
    // Input value of N
    int N = 3;
 
    // input value of X and Y
    int X = 2, Y = 1;
    findTriplet(X, Y, N);
  }
 
  static void findTriplet(int X, int Y, int N)
  {
    // Array initialized to hold
    // consecutive array numbers
    int[] arr = new int[3];
 
    // Condition when absolute
    // difference between X and Y is 2
    if (Math.Abs(X - Y) == 2) {
 
      // Printing possible number
      // of cases
      Console.WriteLine(1);
      arr[0] = X;
      arr[2] = Y;
      arr[1] = (X + Y) / 2;
 
      // Printing consecutive
      // array elements
      Console.WriteLine(arr[0] + "  " + arr[1] + "  "
                        + arr[2]);
    }
 
    // Condition when absolute
    // difference between X and Y is 1
    else if (Math.Abs(X - Y) == 1) {
 
      // If one from X and Y is
      // equal to 1
      if (Math.Min(X, Y) == 1) {
 
        // Printing possible
        // number of cases
        Console.WriteLine(1);
        arr[0] = 1;
        arr[1] = Math.Max(X, Y);
        arr[2] = Math.Max(X, Y) + 1;
 
        // Printing consecutive
        // array elements
        Console.WriteLine(arr[0] + "  " + arr[1]
                          + "  " + arr[2]);
      }
      else if (Math.Max(X, Y) == N) {
 
        // Printing possible
        // number of cases
        Console.WriteLine(1);
        arr[0] = Math.Min(X, Y) - 1;
        arr[1] = Math.Min(X, Y);
        arr[2] = Math.Max(X, Y);
 
        // Printing consecutive
        // array elements
        Console.WriteLine(arr[0] + " " + arr[1]
                          + " " + arr[2]);
      }
 
      // For cases when neither X
      // and nor Y is not equal
      // to 1 or N.
      else {
 
        // Printing possible cases
        Console.WriteLine(2);
 
        // Values of consecutive
        // numbers for first case
        arr[0] = Math.Min(X, Y) - 1;
        arr[1] = Math.Min(X, Y);
        arr[2] = Math.Max(X, Y);
 
        // Printing consecutive
        // array numbers
        Console.WriteLine(arr[0] + " " + arr[1]
                          + " " + arr[2]);
 
        // Values of consecutive
        // numbers for second case
        arr[0] = Math.Min(X, Y);
        arr[1] = Math.Max(X, Y);
        arr[2] = Math.Max(X, Y) + 1;
 
        // Printing consecutive
        // array numbers
        Console.WriteLine(arr[0] + " " + arr[1]
                          + " " + arr[2]);
      }
    }
 
    // When difference between X and Y
    // is greater than 2
    else {
      Console.WriteLine(0);
    }
  }
 
}
 
// This code is contributed by sanjoy_62.


Javascript




<script>
    // JavaScript code to implement the approach
 
    const findTriplet = (X, Y, N) => {
        // Array initialized to hold
        // consecutive array numbers
        let arr = new Array(3).fill(0);
 
        // Condition when absolute
        // difference between X and Y is 2
        if (Math.abs(X - Y) == 2) {
 
            // Printing possible number
            // of cases
            document.write("1<br/>");
            arr[0] = X;
            arr[2] = Y;
            arr[1] = parseInt((X + Y) / 2);
 
            // Printing consecutive
            // array elements
            document.write(`${arr[0]} ${arr[1]} ${arr[2]}<br/>`);
        }
 
        // Condition when absolute
        // difference between X and Y is 1
        else if (Math.abs(X - Y) == 1) {
 
            // If one from X and Y is
            // equal to 1
            if (Math.min(X, Y) == 1) {
 
                // Printing possible
                // number of cases
                document.write("1<br/>");
                arr[0] = 1;
                arr[1] = Math.max(X, Y);
                arr[2] = Math.max(X, Y) + 1;
 
                // Printing consecutive
                // array elements
                document.write(`${arr[0]} ${arr[1]} ${arr[2]}<br/>`);
            }
            else if (Math.max(X, Y) == N) {
 
                // Printing possible
                // number of cases
                document.write("1<br/>");
                arr[0] = Math.min(X, Y) - 1;
                arr[1] = Math.min(X, Y);
                arr[2] = Math.max(X, Y);
 
                // Printing consecutive
                // array elements
                document.write(`${arr[0]} ${arr[1]} ${arr[2]}<br/>`);
            }
 
            // For cases when neither X
            // and nor Y is not equal
            // to 1 or N.
            else {
 
                // Printing possible cases
                document.write("2<br/>");
 
                // Values of consecutive
                // numbers for first case
                arr[0] = Math.min(X, Y) - 1;
                arr[1] = Math.min(X, Y);
                arr[2] = Math.max(X, Y);
 
                // Printing consecutive
                // array numbers
                document.write(`${arr[0]} ${arr[1]} ${arr[2]}<br/>`);
 
                // Values of consecutive
                // numbers for second case
                arr[0] = Math.min(X, Y);
                arr[1] = Math.max(X, Y);
                arr[2] = Math.max(X, Y) + 1;
 
                // Printing consecutive
                // array numbers
                document.write(`${arr[0]} ${arr[1]} ${arr[2]}<br/>`);
            }
        }
 
        // When difference between X and Y
        // is greater than 2
        else {
            document.write("0<br/>");
        }
    }
 
    // Driver function
 
 
    // Input value of N
    let N = 3;
 
    // input value of X and Y
    let X = 2, Y = 1;
    findTriplet(X, Y, N);
 
    // This code is contributed by rakeshsahni
 
</script>


Output

1
1  2  3

Time Complexity: O(1)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
15 Nov, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments