Saturday, December 28, 2024
Google search engine
HomeLanguagesDynamic ProgrammingCount ways to divide circle using N non-intersecting chords

Count ways to divide circle using N non-intersecting chords

Given a number N, find the number of ways you can draw N chords in a circle with 2*N points such that no 2 chords intersect. 
Two ways are different if there exists a chord which is present in one way and not in other.
Examples: 
 

Input : N = 2
Output : 2
Explanation: If points are numbered 1 to 4 in 
clockwise direction, then different ways to 
draw chords are:
{(1-2), (3-4)} and {(1-4), (2-3)}


Input : N = 1
Output : 1
Explanation: Draw a chord between points 1 and 2.

 

If we draw a chord between any two points, can you observe the current set of points getting broken into two smaller sets S_1 and S_2. If we draw a chord from a point in S_1 to a point in S_2, it will surely intersect the chord we’ve just drawn. 
So, we can arrive at a recurrence that Ways(n) = sum[i = 0 to n-1] { Ways(i)*Ways(n-i-1) }. 
Here we iterate over i, assuming that size of one of the sets is i and size of another set automatically is (n-i-1) since we’ve already used a pair of points and i pair of points in one set. 
 

C++




// cpp code to count ways
// to divide circle using
// N non-intersecting chords.
#include <bits/stdc++.h>
using namespace std;
 
int chordCnt( int A){
 
    // n = no of points required
    int n = 2 * A;
     
    // dp array containing the sum
    int dpArray[n + 1]={ 0 };
    dpArray[0] = 1;
    dpArray[2] = 1;
    for (int i=4;i<=n;i+=2){
        for (int j=0;j<i-1;j+=2){
             
          dpArray[i] +=
            (dpArray[j]*dpArray[i-2-j]);
        }
    }
 
    // returning the required number
    return dpArray[n];
}
// Driver function
int main()
{
 
    int N;
    N = 2;
cout<<chordCnt( N)<<'\n';
    N = 1;
cout<<chordCnt( N)<<'\n';
    N = 4;
cout<<chordCnt( N)<<'\n';
    return 0;
}
 
// This code is contributed by Gitanjali.


Java




// Java code to count ways
// to divide circle using
// N non-intersecting chords.
import java.io.*;
 
class GFG {
    static int chordCnt(int A)
    {
 
        // n = no of points required
        int n = 2 * A;
 
        // dp array containing the sum
        int[] dpArray = new int[n + 1];
        dpArray[0] = 1;
        dpArray[2] = 1;
        for (int i = 4; i <= n; i += 2) {
            for (int j = 0; j < i - 1; j += 2)
            {
                dpArray[i] += (dpArray[j] *
                              dpArray[i - 2 - j]);
            }
        }
 
        // returning the required number
        return dpArray[n];
    }
    public static void main(String[] args)
    {
        int N;
        N = 2;
        System.out.println(chordCnt(N));
        N = 1;
        System.out.println(chordCnt(N));
        N = 4;
        System.out.println(chordCnt(N));
    }
}
 
// This code is contributed by Gitanjali.


Python 3




# python code to count ways to divide
# circle using N non-intersecting chords.
def chordCnt( A):
 
    # n = no of points required
    n = 2 * A
 
    # dp array containing the sum
    dpArray = [0]*(n + 1)
    dpArray[0] = 1
    dpArray[2] = 1
    for i in range(4, n + 1, 2):
        for j in range(0, i-1, 2):
            dpArray[i] += (dpArray[j]*dpArray[i-2-j])
 
    # returning the required number
    return int(dpArray[n])
 
# driver code
N = 2
print(chordCnt( N))
N = 1
print(chordCnt( N))
N = 4
print(chordCnt( N))


C#




// C# code to count ways to divide
// circle using N non-intersecting chords.
using System;
 
class GFG {
     
    static int chordCnt(int A)
    {
        // n = no of points required
        int n = 2 * A;
 
        // dp array containing the sum
        int[] dpArray = new int[n + 1];
        dpArray[0] = 1;
        dpArray[2] = 1;
         
        for (int i = 4; i <= n; i += 2)
        {
            for (int j = 0; j < i - 1; j += 2)
            {
                dpArray[i] += (dpArray[j] * dpArray[i - 2 - j]);
            }
        }
 
        // returning the required number
        return dpArray[n];
    }
     
    // Driver code
    public static void Main()
    {
        int N;
        N = 2;
        Console.WriteLine(chordCnt(N));
        N = 1;
        Console.WriteLine(chordCnt(N));
        N = 4;
        Console.WriteLine(chordCnt(N));
    }
}
 
// This code is contributed by vt_m.


PHP




<?php
// PHP code to count ways
// to divide circle using
// N non-intersecting chords.
function chordCnt( $A)
{
 
    // n = no of points required
    $n = 2 * $A;
     
    // dp array containing the sum
    $dpArray = array_fill(0, $n + 1, 0);
    $dpArray[0] = 1;
    $dpArray[2] = 1;
    for ($i = 4; $i <= $n; $i += 2)
    {
        for ($j = 0; $j < $i - 1; $j += 2)
        {
             
            $dpArray[$i] += ($dpArray[$j] *
                             $dpArray[$i - 2 - $j]);
        }
    }
 
    // returning the required number
    return $dpArray[$n];
}
 
// Driver Code
$N = 2;
echo chordCnt($N), "\n";
$N = 1;
echo chordCnt($N), "\n";
$N = 4;
echo chordCnt($N), "\n";
     
// This code is contributed by Ryuga
?>


Javascript




<script>
 
// JavaScript code to count ways
// to divide circle using
// N non-intersecting chords.
 
function chordCnt( A){
 
    // n = no of points required
    var n = 2 * A;
     
    // dp array containing the sum
    var dpArray = Array(n+1).fill(0);
    dpArray[0] = 1;
    dpArray[2] = 1;
    for (var i=4;i<=n;i+=2){
        for (var j=0;j<i-1;j+=2){
             
          dpArray[i] +=
            (dpArray[j]*dpArray[i-2-j]);
        }
    }
 
    // returning the required number
    return dpArray[n];
}
 
 
// Driver function
var N;
N = 2;
document.write( chordCnt( N) + '<br>');
N = 1;
document.write( chordCnt( N) + '<br>');
N = 4;
document.write( chordCnt( N) + '<br>');
 
 
</script>


Output:  

2
1
14

Time Complexity: O(n2
Auxiliary Space: O(n)

Please suggest if someone has a better solution which is more efficient in terms of space and time.
This article is contributed by Aarti_Rathi. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments