Given an array arr[] consisting of N distinct integers, the task is to count the number of triplets (i, j, k) possible from the array arr[] such that i < j < k and arr[i] < arr[j] > arr[k].
Examples:
Input: arr[] = {2, 3, 1, -1}
Output: 2
Explanation: From the given array, all possible triplets satisfying the property (i, j, k) and arr[i] < arr[j] > arr[k] are:
- (0, 1, 2): arr[0](= 2) < arr[1](= 3) > arr[2](= 1).
- (0, 1, 3): arr[0](= 2) < arr[1](= 3) > arr[3](= -1).
Therefore, the count of triplets is 2.
Input: arr[] = {2, 3, 4, 6, 7, 9, 1, 12, 10, 8}
Output: 41
Naive Approach: The simplest approach to solve the problem is to traverse the given array and for each element arr[i], the product of the count of smaller elements on the left side of arr[i] and the count of smaller elements on the right side of arr[i] gives the count of triplets for the element arr[i] as the middle element. The sum of all the counts obtained for each index is the required number of valid triplets. Time Complexity: O(N2)
Auxiliary Space: O(1)
Efficient Approach: The above approach can also be optimized by finding the count of smaller elements using a Policy-based data structure (PBDS). Follow the steps below to solve the problem:
- Initialize the variable, say ans to 0 that stores the total number of possible pairs.
- Initialize two containers of the Policy-based data structure, say P and Q.
- Initialize a vector of pairs V, where V[i]. first and V[i].second stores the count of smaller elements on the left and the right side of every array element arr[i].
- Traverse the given array and for each element arr[i], update the value of V[i].first as P.order_of_key(arr[i]) and insert arr[i] to set P.
- Traverse the array from right to left and for each element arr[i], update the value of V[i].first as P.order_of_key(arr[i]) and insert arr[i] to set Q.
- Traverse the vector of pairs V and add the value of V[i].first * V[i].second to the variable ans.
- After completing the above steps, print the value of ans as the total number of pairs.
Below is the implementation of the above approach:
C++
// C++ program for the above approach Â
#include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> #include <functional> #include <iostream> using namespace __gnu_pbds; using namespace std; Â
// Function to find the count of triplets // satisfying the given conditions void findTriplets( int arr[], int n) {     // Stores the total count of pairs     int ans = 0; Â
    // Declare the set     tree< int , null_type, less< int >, rb_tree_tag,          tree_order_statistics_node_update>         p, q; Â
    // Declare the vector of pairs     vector<pair< int , int > > v(n); Â
    // Iterate over the array from     // left to right     for ( int i = 0; i < n; i++) { Â
        // Find the index of element         // in sorted array         int index = p.order_of_key(arr[i]); Â
        // Assign to the left         v[i].first = index; Â
        // Insert into the set         p.insert(arr[i]);     } Â
    // Iterate from right to left     for ( int i = n - 1; i >= 0; i--) { Â
        // Find the index of element         // in the sorted array         int index = q.order_of_key(arr[i]); Â
        // Assign to the right         v[i].second = index; Â
        // Insert into the set         q.insert(arr[i]);     } Â
    // Traverse the vector of pairs     for ( int i = 0; i < n; i++) {         ans += (v[i].first * v[i].second);     } Â
    // Print the total count     cout << ans; } Â
// Driver Code int main() { Â Â Â Â int arr[] = { 2, 3, 1, -1 }; Â Â Â Â int N = sizeof (arr) / sizeof (arr[0]); Â Â Â Â findTriplets(arr, N); Â
    return 0; } |
Java
import java.util.ArrayList; import java.util.List; Â
public class Main { Â
  // Function to find the count of triplets   // satisfying the given conditions   public static void findTriplets( int [] arr, int n)   { Â
    // Stores the total count of pairs     int ans = 0 ; Â
    // Declare the list of pairs     List<Pair<Integer, Integer>> v = new ArrayList<>(); Â
    // Iterate over the array from     // left to right     for ( int i = 0 ; i < n; i++) {       // Find the index of element       // in sorted array       int index = 0 ;       for ( int j = 0 ; j < i; j++) {         if (arr[j] < arr[i]) {           index++;         }       } Â
      // Assign to the left       v.add( new Pair<>(index, 0 ));     } Â
    // Iterate from right to left     for ( int i = n - 1 ; i >= 0 ; i--) {       // Find the index of element       // in the sorted array       int index = 0 ;       for ( int j = n - 1 ; j > i; j--) {         if (arr[j] < arr[i]) {           index++;         }       } Â
      // Assign to the right       v.get(i).setValue(index);     } Â
    // Traverse the list of pairs     for ( int i = 0 ; i < n; i++) {       ans += (v.get(i).getKey() * v.get(i).getValue());     } Â
    // Print the total count     System.out.println(ans);   } Â
  public static void main(String[] args) {     int [] arr = { 2 , 3 , 1 , - 1 };     int N = arr.length;     findTriplets(arr, N);   } } Â
class Pair<K, V> { Â Â private K key; Â Â private V value; Â
  public Pair(K key, V value) {     this .key = key;     this .value = value;   } Â
  public void setKey(K key) {     this .key = key;   } Â
  public void setValue(V value) {     this .value = value;   } Â
  public K getKey() {     return key;   } Â
  public V getValue() {     return value;   } } Â
// This code is contributed by aadityaburujwale. |
Python3
import bisect Â
def findTriplets(arr, n):     # Stores the total count of pairs     ans = 0     # Declare the lists     p = []     q = [] Â
    # Iterate over the array from left to right     for i in range (n):         # Find the index of element in sorted array         index = bisect.bisect_left(p, arr[i])         # Insert into the list         p.insert(index, arr[i])     # Iterate from right to left     for i in range (n - 1 , - 1 , - 1 ):         # Find the index of element in the sorted array         index = bisect.bisect_left(q, arr[i])         # Insert into the list         q.insert(index, arr[i]) Â
    ans = 0     for i in range (n):         for j in range (i + 1 , n):             for k in range (j + 1 , n):                 if arr[i] < arr[j] > arr[k]:                     ans + = 1     print (ans) Â
# Driver Code arr = [ 2 , 3 , 1 , - 1 ] n = len (arr) findTriplets(arr, n) Â
# This code is contributed by Vikram_Shirsat |
C#
using System; using System.Collections.Generic; Â
class GFG { Â
  public static void findTriplets( int [] arr, int n)   { Â
    // Stores the total count of pairs     int ans = 0; Â
    // Declare the list of pairs     List<KeyValuePair< int , int >> v = new List<KeyValuePair< int , int >>(); Â
    // Iterate over the array from     // left to right     for ( int i = 0; i < n; i++) {       // Find the index of element       // in sorted array       int index = 0;       for ( int j = 0; j < i; j++) {         if (arr[j] < arr[i]) {           index++;         }       } Â
      // Assign to the left       v.Add( new KeyValuePair< int , int >(index, 0));     } Â
    // Iterate from right to left     for ( int i = n - 1; i >= 0; i--) {       // Find the index of element       // in the sorted array       int index = 0;       for ( int j = n - 1; j > i; j--) {         if (arr[j] < arr[i]) {           index++;         }       } Â
      // Assign to the right       v[i] = new KeyValuePair< int , int >(v[i].Key, index);     } Â
    // Traverse the list of pairs     for ( int i = 0; i < n; i++) {       ans += (v[i].Key * v[i].Value);     } Â
    // Print the total count     Console.WriteLine(ans);   } Â
  public static void Main( string [] args) {     int [] arr = { 2, 3, 1, -1 };     int N = arr.Length;     findTriplets(arr, N);   } } Â
// This code is contributed by phasing17. |
Javascript
// Function to find the count of triplets // satisfying the given conditions function findTriplets(arr, n) {     // Stores the total count of pairs     let ans = 0;        // Declare the list of pairs     let v = new Array();        // Iterate over the array from left to right     for (let i = 0; i < n; i++) {         // Find the index of element in sorted array         let index = 0;         for (let j = 0; j < i; j++) {             if (arr[j] < arr[i]) {                 index++;             }         }            // Assign to the left         v.push({ left: index, right: 0 });     }        // Iterate from right to left     for (let i = n - 1; i >= 0; i--) {         // Find the index of element in the sorted array         let index = 0;         for (let j = n - 1; j > i; j--) {             if (arr[j] < arr[i]) {                 index++;             }         }            // Assign to the right         v[i].right = index;     }        // Traverse the list of pairs     for (let i = 0; i < n; i++) {         ans += (v[i].left * v[i].right);     }        // Print the total count     console.log(ans); } Â
let arr = [2, 3, 1, -1]; let N = arr.length; findTriplets(arr, N); // this code is contributed by devendra |
2
Time Complexity: O(N * log N)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!