Sunday, October 12, 2025
HomeData Modelling & AICount triplet pairs (A, B, C) of points in 2-D space that...

Count triplet pairs (A, B, C) of points in 2-D space that satisfy the given condition

Given N points in 2 dimensional space. The task is to count the number of triplets pairs (A, B, C) such that point B is the midpoint of line segment formed by joining points A and C.
Examples: 
 

Input: points = {{1, 1}, {2, 2}, {3, 3}} 
Output:
The point (2, 2) is the midpoint of the line segment joining points (1, 1) and (3, 3).
Input: points = {{1, 1}, {1, 2}, {1, 5}} 
Output:
 

 

Approach: Consider a pair of points A and C. The midpoint of the line segment joining these points will be ((A * X + C * X) / 2, (A * Y + C * Y) / 2)). If the point is present in the given list of points, we have found a triplet. To quickly check if a point is in our list of points we can use a set. Doing this for all pairs of points will give us the required count.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count of possible triplets
int countTriplets(int n, vector<pair<int, int> > points)
{
    set<pair<int, int> > pts;
    int ct = 0;
 
    // Insert all the points in a set
    for (int i = 0; i < n; i++)
        pts.insert(points[i]);
 
    for (int i = 0; i < n; i++)
        for (int j = i + 1; j < n; j++) {
            int x = points[i].first + points[j].first;
            int y = points[i].second + points[j].second;
 
            // If the mid point exists in the set
            if (x % 2 == 0 && y % 2 == 0)
                if (pts.find(make_pair(x / 2, y / 2))
                    != pts.end())
                    ct++;
        }
 
    // Return the count of valid triplets
    return ct;
}
 
// Driver code
int main()
{
    vector<pair<int, int> > points
        = { { 1, 1 }, { 2, 2 }, { 3, 3 } };
    int n = points.size();
    cout << countTriplets(n, points);
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
     
static class pair
{
    int first,second;
 
    public pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
     
}
 
// Function to return the count of possible triplets
static int countTriplets(int n, Vector<pair> points)
{
    Set<pair> pts = new HashSet<pair>();
    int ct = 0;
 
    // Insert all the points in a set
    for (int i = 0; i < n; i++)
        pts.add(points.get(i));
 
    for (int i = 0; i < n; i++)
        for (int j = i + 1; j < n; j++)
        {
            int x = points.get(i).first + points.get(j).first;
            int y = points.get(i).second + points.get(j).second;
 
            // If the mid point exists in the set
            if (x % 2 == 0 && y % 2 == 0)
                if (!pts.contains(new pair(x / 2, y / 2)))
                    ct++;
        }
 
    // Return the count of valid triplets
    return ct;
}
 
// Driver code
public static void main(String args[])
{
    Vector<pair> points = new Vector<>();
    points.add(new pair(1,1));
    points.add(new pair(2,2));
    points.add(new pair(3,3));
    int n = points.size();
    System.out.println(countTriplets(n, points));
}
}
 
// This code is contributed by Princi Singh


Python3




# Python3 implementation of the approach
 
# Function to return the count
# of possible triplets
def countTriplets(n, points) :
     
    pts = []
    ct = 0;
 
    # Insert all the points in a set
    for i in range(n) :
        pts.append(points[i]);
 
    for i in range(n) :
        for j in range(i + 1, n) :
            x = points[i][0] + points[j][0];
            y = points[i][1] + points[j][1];
 
            # If the mid point exists in the set
            if (x % 2 == 0 and y % 2 == 0) :
                if [x // 2, y // 2] in pts :
                    ct += 1
                     
    # Return the count of valid triplets
    return ct
 
# Driver code
if __name__ == "__main__" :
     
    points = [[ 1, 1 ], [ 2, 2 ], [ 3, 3 ]]
    n = len(points)
    print(countTriplets(n, points))
 
# This code is contributed by Ryuga


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
     
public class pair
{
    public int first,second;
 
    public pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
     
}
 
// Function to return the count of possible triplets
static int countTriplets(int n, List<pair> points)
{
    HashSet<pair> pts = new HashSet<pair>();
    int ct = 0;
 
    // Insert all the points in a set
    for (int i = 0; i < n; i++)
        pts.Add(points[i]);
 
    for (int i = 0; i < n; i++)
        for (int j = i + 1; j < n; j++)
        {
            int x = points[i].first + points[j].first;
            int y = points[i].second + points[j].second;
 
            // If the mid point exists in the set
            if (x % 2 == 0 && y % 2 == 0)
                if (!pts.Contains(new pair(x / 2, y / 2)))
                    ct++;
        }
 
    // Return the count of valid triplets
    return ct;
}
 
// Driver code
public static void Main(String []args)
{
    List<pair> points = new List<pair>();
    points.Add(new pair(1, 1));
    points.Add(new pair(2, 2));
    points.Add(new pair(3, 3));
    int n = points.Count;
    Console.WriteLine(countTriplets(n, points));
}
}
 
// This code is contributed by 29AjayKumar


PHP




<?php
// PHP implementation of the approach
 
// Function to return the count
// of possible triplets
function countTriplets($n, $points)
{
    $pts = array();
    $ct = 0;
 
    // Insert all the points in a set
    for ($i = 0; $i < count($points); $i++)
    {
        for ($j = 0;
             $j < count($points[$i]); $j++)
        {
            $pts[] = $points[$i][$j];
        }
    }
 
    for ($i = 0; $i < $n; $i++)
        for ($j = $i + 1; $j < $n; $j++)
        {
            $x = $points[$i][0] + $points[$j][0];
            $y = $points[$i][1] + $points[$j][1];
 
            // If the mid point exists in the set
            if ($x % 2 == 0 and $y % 2 == 0)
                if (in_array((int)($x / 2), $pts) and
                    in_array((int)($y / 2), $pts))
                    $ct += 1;
        }
         
    // Return the count of valid triplets
    return $ct;
}
 
// Driver code
$points = array(array( 1, 1 ),
                array( 2, 2 ),
                array( 3, 3 ));
$n = count($points);
print(countTriplets($n, $points));
 
// This code is contributed by chandan_jnu
?>


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the count of possible triplets
function countTriplets(n, points)
{
    var pts = new Set();
    var ct = 0;
 
    // Insert all the points in a set
    for (var i = 0; i < n; i++)
        pts.add(points[i].toString());
 
    for (var i = 0; i < n; i++)
        for (var j = i + 1; j < n; j++) {
            var x = points[i][0] + points[j][0];
            var y = points[i][1] + points[j][1];
 
            // If the mid point exists in the set
            if (x % 2 == 0 && y % 2 == 0)
                if (pts.has([(x / 2), (y / 2)].toString()))
                    ct++;
        }
 
    // Return the count of valid triplets
    return ct;
}
 
// Driver code
var points
    = [ [ 1, 1 ], [ 2, 2 ], [ 3, 3 ] ];
var n = points.length;
document.write( countTriplets(n, points))
 
// This code is contributed by famously.
</script>


Output: 

1

 

Time Complexity: O(N2 logN), where N represents the size of the given vector.
Auxiliary Space: O(N), where N represents the size of the given vector.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32352 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6720 POSTS0 COMMENTS
Nicole Veronica
11885 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11941 POSTS0 COMMENTS
Shaida Kate Naidoo
6840 POSTS0 COMMENTS
Ted Musemwa
7105 POSTS0 COMMENTS
Thapelo Manthata
6795 POSTS0 COMMENTS
Umr Jansen
6795 POSTS0 COMMENTS