Thursday, December 26, 2024
Google search engine
HomeLanguagesDynamic ProgrammingCount the number of ways to tile the floor of size n...

Count the number of ways to tile the floor of size n x m using 1 x m size tiles

Given a floor of size n x m and tiles of size 1 x m. The problem is to count the number of ways to tile the given floor using 1 x m tiles. A tile can either be placed horizontally or vertically. 
Both n and m are positive integers and 2 < = m.
Examples: 
 

Input : n = 2, m = 3
Output : 1
Only one combination to place 
two tiles of size 1 x 3 horizontally
on the floor of size 2 x 3. 

Input :  n = 4, m = 4
Output : 2
1st combination:
All tiles are placed horizontally
2nd combination:
All tiles are placed vertically.

 

This problem is mainly a more generalized approach to the Tiling Problem
Approach: For a given value of n and m, the number of ways to tile the floor can be obtained from the following relation. 
 

            |  1, 1 < = n < m
 count(n) = |  2, n = m
            | count(n-1) + count(n-m), m < n
             

 

C++




// C++ implementation to count number of ways to
// tile a floor of size n x m using 1 x m tiles
#include <bits/stdc++.h>
 
using namespace std;
 
// function to count the total number of ways
int countWays(int n, int m)
{
 
    // table to store values
    // of subproblems
    int count[n + 1];
    count[0] = 0;
 
    // Fill the table upto value n
    for (int i = 1; i <= n; i++) {
 
        // recurrence relation
        if (i > m)
            count[i] = count[i - 1] + count[i - m];
 
        // base cases and for i = m = 1
        else if (i < m || i == 1)
            count[i] = 1;
 
        // i = = m
        else
            count[i] = 2;
    }
 
    // required number of ways
    return count[n];
}
 
// Driver program to test above
int main()
{
    int n = 7, m = 4;
    cout << "Number of ways = "
         << countWays(n, m);
    return 0;
}


Java




// Java implementation to count number
// of ways to tile a floor of size
// n x m using 1 x m tiles
import java.io.*;
 
class GFG {
 
    // function to count the total number of ways
    static int countWays(int n, int m)
    {
        // table to store values
        // of subproblems
        int count[] = new int[n + 1];
        count[0] = 0;
 
        // Fill the table upto value n
        int i;
        for (i = 1; i <= n; i++) {
 
            // recurrence relation
            if (i > m)
                count[i] = count[i - 1] + count[i - m];
 
            // base cases
            else if (i < m || i == 1)
                count[i] = 1;
 
            // i = = m
            else
                count[i] = 2;
        }
 
        // required number of ways
        return count[n];
    }
 
    // Driver program
    public static void main(String[] args)
    {
        int n = 7;
        int m = 4;
        System.out.println("Number of ways = "
                           + countWays(n, m));
    }
}
 
// This code is contributed by vt_m.


Python3




# Python implementation to
# count number of ways to
# tile a floor of size n x m
# using 1 x m tiles
 
def countWays(n, m):
     
    # table to store values
    # of subproblems
    count =[]
    for i in range(n + 2):
        count.append(0)
    count[0] = 0
     
    # Fill the table upto value n
    for i in range(1, n + 1):
     
        # recurrence relation
        if (i > m):
            count[i] = count[i-1] + count[i-m]
         
        # base cases
        elif (i < m or i == 1):
            count[i] = 1
 
        # i = = m
        else:
            count[i] = 2
     
     
    # required number of ways
    return count[n]
 
 
# Driver code
 
n = 7
m = 4
 
print("Number of ways = ", countWays(n, m))
 
# This code is contributed
# by Anant Agarwal.


C#




// C# implementation to count number
// of ways to tile a floor of size
// n x m using 1 x m tiles
using System;
 
class GFG {
 
    // function to count the total
    // number of ways
    static int countWays(int n, int m)
    {
 
        // table to store values
        // of subproblems
        int[] count = new int[n + 1];
        count[0] = 0;
 
        // Fill the table upto value n
        int i;
        for (i = 1; i <= n; i++) {
 
            // recurrence relation
            if (i > m)
                count[i] = count[i - 1]
                           + count[i - m];
 
            // base cases and i = m = 1
            else if (i < m || i == 1)
                count[i] = 1;
 
            // i = = m
            else
                count[i] = 2;
        }
 
        // required number of ways
        return count[n];
    }
 
    // Driver program
    public static void Main()
    {
        int n = 7;
        int m = 4;
 
        Console.Write("Number of ways = "
                      + countWays(n, m));
    }
}
 
// This code is contributed by parashar.


PHP




<?php
// PHP implementation to count
// number of ways to tile a
// floor of size n x m using
// 1 x m tiles
 
// function to count the
// total number of ways
function countWays($n, $m)
{
     
    // table to store values
    // of subproblems
    $count[0] = 0;
     
    // Fill the table
    // upto value n
    for ($i = 1; $i <= $n; $i++)
    {
         
        // recurrence relation
        if ($i > $m)
            $count[$i] = $count[$i - 1] +
                         $count[$i - $m];
         
        // base cases
        else if ($i < $m or $i == 1)
            $count[$i] = 1;
 
        // i = = m
        else
            $count[$i] = 2;
    }
     
    // required number of ways
    return $count[$n];
}
 
    // Driver Code
    $n = 7;
    $m = 4;
    echo "Number of ways = ", countWays($n, $m);
 
// This code is contributed by ajit
?>


Javascript




<script>
    // Javascript implementation to count number
    // of ways to tile a floor of size
    // n x m using 1 x m tiles
     
    // function to count the total
    // number of ways
    function countWays(n, m)
    {
   
        // table to store values
        // of subproblems
        let count = new Array(n + 1);
        count[0] = 0;
   
        // Fill the table upto value n
        let i;
        for (i = 1; i <= n; i++) {
   
            // recurrence relation
            if (i > m)
                count[i] = count[i - 1] + count[i - m];
   
            // base cases and i = m = 1
            else if (i < m || i == 1)
                count[i] = 1;
   
            // i = = m
            else
                count[i] = 2;
        }
   
        // required number of ways
        return count[n];
    }
       
    let n = 7;
    let m = 4;
 
    document.write("Number of ways = " + countWays(n, m));
 
// This code is contributed by rameshtravel07.
</script>


Output: 
 

Number of ways = 5

Time Complexity: O(n) 
Auxiliary Space: O(n)
This article is contributed by Ayush Jauhari. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments