Thursday, July 4, 2024
HomeData ModellingData Structure & AlgorithmCount the number of rhombi possible inside a rectangle of given size

Count the number of rhombi possible inside a rectangle of given size

Given a rectangle of height H and width W which has the bottom left corner at (0, 0). The task is to count the number of distinct Rhombi that have all points inside or on the border of the rectangle satisfying the following conditions exists: 
 

  • Have non-zero area.
  • Have diagonals parallel to the x and y axes.
  • Have integer coordinates.

Examples: 
 

Input: H = 2, W = 2 
Output:
There is only one rhombus possible with coordinates (0, 1), (1, 0), (2, 1) and (1, 2). 
 

Input: H = 4, W = 4 
Output: 16 
 

 

Approach: Since the diagonals are parallel to the axis, let’s try fixing the diagonals and creating rhombi on them. For the rhombus to have integer coordinates, the length of the diagonals must be even. Let’s fix the length of the diagonals to i and j, the number of rhombi we can form with these diagonal lengths inside the rectangle would be (H – i + 1) * (W – j + 1). Thus, we iterate over all possible values of i and j and update the count.
Below is the implementation of the above approach:
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count of rhombi possible
long long countRhombi(int h, int w)
{
    long long ct = 0;
 
    // All possible diagonal lengths
    for (int i = 2; i <= h; i += 2)
        for (int j = 2; j <= w; j += 2)
 
            // Update rhombi possible with
            // the current diagonal lengths
            ct += (h - i + 1) * (w - j + 1);
 
    // Return the total count
    // of rhombi possible
    return ct;
}
 
// Driver code
int main()
{
    int h = 2, w = 2;
 
    cout << countRhombi(h, w);
 
    return 0;
}


Java




// Java implementation of the approach
import java.io.*;
 
class GFG
{
     
// Function to return the count of rhombi possible
static int countRhombi(int h, int w)
{
    int ct = 0;
 
    // All possible diagonal lengths
    for (int i = 2; i <= h; i += 2)
        for (int j = 2; j <= w; j += 2)
 
            // Update rhombi possible with
            // the current diagonal lengths
            ct += (h - i + 1) * (w - j + 1);
 
    // Return the total count
    // of rhombi possible
    return ct;
}
 
    // Driver code
    public static void main (String[] args)
    {
    int h = 2, w = 2;
    System.out.println (countRhombi(h, w));
    }
}
 
// This code is contributed by jit_t


Python 3




# Python 3 implementation of the approach
 
# Function to return the count of
# rhombi possible
def countRhombi(h, w):
 
    ct = 0;
 
    # All possible diagonal lengths
    for i in range(2, h + 1, 2):
        for j in range(2, w + 1, 2):
 
            # Update rhombi possible with
            # the current diagonal lengths
            ct += (h - i + 1) * (w - j + 1)
 
    # Return the total count
    # of rhombi possible
    return ct
 
# Driver code
if __name__ == "__main__":
 
    h = 2
    w = 2
 
    print(countRhombi(h, w))
 
# This code is contributed by ita_c


C#




// C# program to find the frequency of
// minimum element in the array
using System;
 
class GFG
{
         
    // Function to return the count
    // of rhombi possible
    static int countRhombi(int h, int w)
    {
        int ct = 0;
     
        // All possible diagonal lengths
        for (int i = 2; i <= h; i += 2)
            for (int j = 2; j <= w; j += 2)
     
                // Update rhombi possible with
                // the current diagonal lengths
                ct += (h - i + 1) * (w - j + 1);
     
        // Return the total count
        // of rhombi possible
        return ct;
    }
     
    // Driver code
    public static void Main()
    {
        int h = 2, w = 2;
         
        Console.WriteLine(countRhombi(h, w));
    }
}
 
// This code is contributed by Ryuga


PHP




<?php
// PHP implementation of the approach
 
// Function to return the count of
// rhombi possible
function countRhombi($h, $w)
{
    $ct = 0;
 
    // All possible diagonal lengths
    for ($i = 2; $i <= $h; $i += 2)
        for ($j = 2; $j <= $w; $j += 2)
 
            // Update rhombi possible with
            // the current diagonal lengths
            $ct += ($h - $i + 1) * ($w - $j + 1);
 
    // Return the total count
    // of rhombi possible
    return $ct;
}
 
// Driver code
$h = 2; $w = 2;
echo(countRhombi($h, $w));
 
// This code is contributed by Code_Mech
?>


Javascript




<script>
    // Javascript program to find the frequency of
    // minimum element in the array 
     
    // Function to return the count
    // of rhombi possible
    function countRhombi(h, w)
    {
        let ct = 0;
       
        // All possible diagonal lengths
        for (let i = 2; i <= h; i += 2)
            for (let j = 2; j <= w; j += 2)
       
                // Update rhombi possible with
                // the current diagonal lengths
                ct += (h - i + 1) * (w - j + 1);
       
        // Return the total count
        // of rhombi possible
        return ct;
    }
     
    let h = 2, w = 2;
           
      document.write(countRhombi(h, w));
     
</script>


Output: 

1

 

Time Complexity: O(H * W)

Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Shaida Kate Naidoo
am passionate about learning the latest technologies available to developers in either a Front End or Back End capacity. I enjoy creating applications that are well designed and responsive, in addition to being user friendly. I thrive in fast paced environments. With a diverse educational and work experience background, I excel at collaborating with teams both local and international. A versatile developer with interests in Software Development and Software Engineering. I consider myself to be adaptable and a self motivated learner. I am interested in new programming technologies, and continuous self improvement.
RELATED ARTICLES

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Most Popular

Recent Comments