Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AICount the number of elements in an array which are divisible by...

Count the number of elements in an array which are divisible by k

Given an array of integers. The task is to calculate the count of a number of elements which are divisible by a given number k.

Examples: 

Input: arr[] = { 2, 6, 7, 12, 14, 18 }, k = 3
Output: 3
Numbers which are divisible by k are { 6, 12, 18 }

Input: arr[] = { 2, 6, 7, 12, 14, 18 }, k = 2
Output: 5

Method-1: Start traversing the array and check if the current element is divisible by K. If yes then increment the count. Print the count when all the elements get traversed.

Below is the implementation of the above approach: 

C++




// C++ program to Count the number of elements
// in an array which are divisible by k
#include <iostream>
using namespace std;
 
// Function to count the elements
int CountTheElements(int arr[], int n, int k)
{
    int counter = 0;
 
    for (int i = 0; i < n; i++) {
        if (arr[i] % k == 0)
            counter++;
    }
 
    return counter;
}
 
// Driver code
int main()
{
    int arr[] = { 2, 6, 7, 12, 14, 18 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 3;
 
    cout << CountTheElements(arr, n, k);
 
    return 0;
}


Java




// Java program to Count the number of elements
// in an array which are divisible by k
import java.util.*;
 
class Geeks {
 
 
// Function to count the elements
static int CountTheElements(int arr[], int n, int k)
{
    int counter = 0;
 
    for (int i = 0; i < n; i++) {
        if (arr[i] % k == 0)
            counter++;
    }
 
    return counter;
}
 
// Driver code
public static void main(String args[])
{
    int arr[] = { 2, 6, 7, 12, 14, 18 };
    int n = arr.length;
    int k = 3;
 
    System.out.println(CountTheElements(arr, n, k));
}
}
 
// This code is contributed by ankita_saini


Python3




# Python 3 program to Count the
# number of elements in an array
# which are divisible by k
 
# Function to count the elements
def CountTheElements(arr, n, k):
    counter = 0
 
    for i in range(0, n, 1):
        if (arr[i] % k == 0):
            counter = counter+1
     
    return counter
 
# Driver code
if __name__ == '__main__':
    arr = [2, 6, 7, 12, 14, 18];
    n = len(arr)
    k = 3
 
    print(CountTheElements(arr, n, k))
 
# This code is contributed by
# Surendra_Gangwar


C#




// C# program to Count the number of elements
// in an array which are divisible by k
using System;
 
class Geeks {
 
 
// Function to count the elements
static int CountTheElements(int []arr, int n, int k)
{
    int counter = 0;
 
    for (int i = 0; i < n; i++) {
        if (arr[i] % k == 0)
            counter++;
    }
 
    return counter;
}
 
// Driver code
public static void Main()
{
    int []arr = { 2, 6, 7, 12, 14, 18 };
    int n = arr.Length;
    int k = 3;
 
    Console.WriteLine(CountTheElements(arr, n, k));
}
}
//This code is contributed by inder_verma..


PHP




<?php
// PHP program to Count the number of elements
// in an array which are divisible by k
 
// Function to count the elements
function CountTheElements($arr, $n, $k)
{
    $counter = 0;
 
    for ($i = 0; $i < $n; $i++)
    {
        if ($arr[$i] % $k == 0)
            $counter++;
    }
 
    return $counter;
}
 
// Driver code
$arr = array( 2, 6, 7, 12, 14, 18 );
$n = count($arr);
$k = 3;
 
echo CountTheElements($arr, $n, $k);
 
// This code is contributed by inder_verma
?>


Javascript




<script>
 
// Javascript program to Count the number
// of elements in an array which are
// divisible by k
 
// Function to count the elements
function CountTheElements(arr, n, k)
{
    let counter = 0;
 
    for(let i = 0; i < n; i++)
    {
        if (arr[i] % k == 0)
            counter++;
    }
 
    return counter;
}
 
// Driver code
let arr = [ 2, 6, 7, 12, 14, 18 ];
let n = arr.length;
let k = 3;
 
document.write(CountTheElements(arr, n, k));
 
// This code is contributed by subhammahato348
 
</script>


Output

3

Complexity Analysis:

  • Time Complexity: O(n) 
  • Auxiliary Space: O(1)

Method-2: Another way to do that is to use inbuilt function – Count_if . This functions takes in pointers to beginning and ending of the container containing the elements and auxiliary function. It will return the count of elements for which the function will return true. 

Below is the implementation of the above approach: 

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
int main()
{
    vector<int> v{ 2, 6, 7, 12, 14, 18 };
 
    // Count the number elements which when passed
    // through the function (3rd argument) returns true
    int res = count_if(v.begin(), v.end(),
                       [](int i, int k = 3) { return i % k == 0; });
    cout << res;
 
    return 0;
}


Java




// Java implementation of the above approach
import java.util.*;
 
class GFG
{
public static void main(String[] args)
{
   int []v = { 2, 6, 7, 12, 14, 18 };
 
    // Count the number elements which when passed
    // through the function (3rd argument) returns true
    int res = 0;
    for(int i = 0; i < v.length; i++) {
        if(v[i] % 3 == 0)
            res++;
    }
     System.out.print(res);
 
}
}
 
// This code is contributed by gauravrajput1


Python3




# Java implementation of the above approach
v = [ 2, 6, 7, 12, 14, 18 ];
 
# Count the number elements which when passed
# through the function (3rd argument) returns true
res = 0
for i in range(0,len(v)):
    if(v[i] % 3 == 0):
        res+=1
     
print(res)
# This code is contributed by shivanisinghss2110


C#




// C# implementation of the above approach
using System;
 
class GFG
{
public static void Main(String[] args)
{
   int []v = { 2, 6, 7, 12, 14, 18 };
 
    // Count the number elements which when passed
    // through the function (3rd argument) returns true
    int res = 0;
    for(int i = 0; i < v.Length; i++) {
        if(v[i] % 3 == 0)
            res++;
    }
     Console.Write(res);
 
}
}
 
// This code is contributed by shivanisinghss2110


Javascript




<script>
 
// JavaScript implementation of the above approach
var v = [ 2, 6, 7, 12, 14, 18 ];
 
    // Count the number elements which when passed
    // through the function (3rd argument) returns true
    var res = 0;
    for(var i = 0; i < v.length; i++) {
        if(v[i] % 3 == 0)
            res++;
    }
     document.write(res);
 
// This code is contributed by shivanisinghss2110
 
</script>


Output

3

Complexity Analysis:

  • Time Complexity: O(N)
  • Auxiliary Space: O(1)

Please suggest if someone has a better solution which is more efficient in terms of space and time.
This article is contributed by Aarti_Rathi.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments