Saturday, December 28, 2024
Google search engine
HomeData Modelling & AICount the number of digits of palindrome numbers in an array

Count the number of digits of palindrome numbers in an array

Given an array arr[] with N integers. The task is to count all the digits of all palindrome numbers present in the array.
Examples: 
 

Input: arr[] = {121, 56, 434} 
Output:
Only 121 and 434 are palindromes 
and digitCount(121) + digitCount(434) = 3 + 3 = 6
Input: arr[] = {56, 455, 546, 234} 
Output:
 

 

Approach: For every element of the array, if it is a one digit number then add 1 to the answer for its digit else check if the number is a palindrome. If yes then find the count of its digits and add it to the answer.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include<bits/stdc++.h>
using namespace std;
 
// Function to return the reverse of n
int reverse(int n)
{
    int rev = 0;
    while (n > 0)
    {
        int d = n % 10;
        rev = rev * 10 + d;
        n = n / 10;
    }
    return rev;
}
 
// Function that returns true
// if n is a palindrome
bool isPalin(int n)
{
    return (n == reverse(n));
}
 
// Function to return the
// count of digits of n
int countDigits(int n)
{
    int c = 0;
    while (n > 0)
    {
        n = n / 10;
        c++;
    }
    return c;
}
 
// Function to return the count of digits
// in all the palindromic numbers of arr[]
int countPalinDigits(int arr[], int n)
{
    int s = 0;
    for (int i = 0; i < n; i++)
    {
 
        // If arr[i] is a one digit number
        // or it is a palindrome
        if (arr[i] < 10 || isPalin(arr[i]))
        {
            s += countDigits(arr[i]);
        }
    }
    return s;
}
 
// Driver code
int main()
{
    int arr[] = { 121, 56, 434 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << (countPalinDigits(arr, n));
    return 0;
}
 
// This code is contributed by mits


Java




// Java implementation of the approach
import java.util.*;
class GFG {
 
    // Function to return the reverse of n
    static int reverse(int n)
    {
        int rev = 0;
        while (n > 0) {
            int d = n % 10;
            rev = rev * 10 + d;
            n = n / 10;
        }
        return rev;
    }
 
    // Function that returns true
    // if n is a palindrome
    static boolean isPalin(int n)
    {
        return (n == reverse(n));
    }
 
    // Function to return the
    // count of digits of n
    static int countDigits(int n)
    {
        int c = 0;
        while (n > 0) {
            n = n / 10;
            c++;
        }
        return c;
    }
 
    // Function to return the count of digits
    // in all the palindromic numbers of arr[]
    static int countPalinDigits(int[] arr, int n)
    {
        int s = 0;
        for (int i = 0; i < n; i++) {
 
            // If arr[i] is a one digit number
            // or it is a palindrome
            if (arr[i] < 10 || isPalin(arr[i])) {
                s += countDigits(arr[i]);
            }
        }
        return s;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int[] arr = { 121, 56, 434 };
        int n = arr.length;
        System.out.println(countPalinDigits(arr, n));
    }
}


Python3




# Python3 implementation of the approach
 
# Function to return the reverse of n
def reverse(n):
    rev = 0;
    while (n > 0):
        d = n % 10;
        rev = rev * 10 + d;
        n = n // 10;
    return rev;
 
# Function that returns true
# if n is a palindrome
def isPalin(n):
    return (n == reverse(n));
 
 
# Function to return the
# count of digits of n
def countDigits(n):
    c = 0;
    while (n > 0):
        n = n // 10;
        c += 1;
    return c;
 
# Function to return the count of digits
# in all the palindromic numbers of arr[]
def countPalinDigits(arr, n):
    s = 0;
    for i in range(n):
 
        # If arr[i] is a one digit number
        # or it is a palindrome
        if (arr[i] < 10 or isPalin(arr[i])):
            s += countDigits(arr[i]);
 
    return s;
 
 
# Driver code
arr = [ 121, 56, 434 ];
n = len(arr);
print(countPalinDigits(arr, n));
 
# This code contributed by Rajput-Ji


C#




// C# implementation of the approach
using System;
     
class GFG
{
 
    // Function to return the reverse of n
    static int reverse(int n)
    {
        int rev = 0;
        while (n > 0)
        {
            int d = n % 10;
            rev = rev * 10 + d;
            n = n / 10;
        }
        return rev;
    }
 
    // Function that returns true
    // if n is a palindrome
    static bool isPalin(int n)
    {
        return (n == reverse(n));
    }
 
    // Function to return the
    // count of digits of n
    static int countDigits(int n)
    {
        int c = 0;
        while (n > 0)
        {
            n = n / 10;
            c++;
        }
        return c;
    }
 
    // Function to return the count of digits
    // in all the palindromic numbers of arr[]
    static int countPalinDigits(int[] arr, int n)
    {
        int s = 0;
        for (int i = 0; i < n; i++)
        {
 
            // If arr[i] is a one digit number
            // or it is a palindrome
            if (arr[i] < 10 || isPalin(arr[i]))
            {
                s += countDigits(arr[i]);
            }
        }
        return s;
    }
 
    // Driver code
    public static void Main()
    {
        int[] arr = { 121, 56, 434 };
        int n = arr.Length;
        Console.WriteLine(countPalinDigits(arr, n));
    }
}
 
/* This code contributed by PrinciRaj1992 */


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the reverse of n
function reverse(n)
{
    let rev = 0;
    while (n > 0)
    {
        let d = n % 10;
        rev = rev * 10 + d;
        n = parseInt(n / 10);
    }
    return rev;
}
 
// Function that returns true
// if n is a palindrome
function isPalin(n)
{
    return (n == reverse(n));
}
 
// Function to return the
// count of digits of n
function countDigits(n)
{
    let c = 0;
    while (n > 0)
    {
        n = parseInt(n / 10);
        c++;
    }
    return c;
}
 
// Function to return the count of digits
// in all the palindromic numbers of arr[]
function countPalinDigits(arr, n)
{
    let s = 0;
    for (let i = 0; i < n; i++)
    {
 
        // If arr[i] is a one digit number
        // or it is a palindrome
        if (arr[i] < 10 || isPalin(arr[i]))
        {
            s += countDigits(arr[i]);
        }
    }
    return s;
}
 
// Driver code
    let arr = [ 121, 56, 434 ];
    let n = arr.length;
    document.write(countPalinDigits(arr, n));
 
</script>


Output: 

6

 

Time Complexity : O(n)
Auxiliary Space: O(1)

Shorter Python Implementation
 

C++




// C++ code to implement the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count of digits
// in all the palindromic numbers of arr[]
int countPalinDigits(vector<int> arr)
{
   int sum = 0;
  
   for (int n: arr)
   {
      string n_str = to_string(n);
      int l = n_str.length();
      string rev = to_string(n);
      reverse(rev.begin(), rev.end());
       
      if (rev == n_str) // if palindrome
         sum += l;
       
   }
   return sum;
    
}
 
// Driver code
int main()
{
    vector <int> arr = { 121, 56, 434 };
    cout << countPalinDigits(arr) << endl;
}
 
// This code is contributed by phasing17


Java




// Java code to implement the approach
import java.util.*;
 
class GFG
{
  // Function to return the count of digits
  // in all the palindromic numbers of arr[]
  static int countPalinDigits(int[] arr)
  {
    int sum = 0;
 
    for (int n : arr)
    {
      String n_str = String.valueOf(n);
      int l = n_str.length();
      String rev = new StringBuilder(new String(n_str)).reverse().toString();
      if (rev.equals(n_str)) // if palindrome
        sum += l;
 
    }
    return sum;
 
  }
 
  // Driver code
  public static void main(String[] args)
  {
    int[] arr = { 121, 56, 434 };
    System.out.println(countPalinDigits(arr));
  }
}
 
// This code is contributed by phasing17


Python3




# Function to return the count of digits
# in all the palindromic numbers of arr[]
def countPalinDigits(arr):
   sum = 0
  
   for n in arr:
      n_str = str(n)
      l = len(n_str)
      if n_str[l::-1] == n_str: # if palindrome
         sum += l
   return sum
 
# Driver code
arr = [ 121, 56, 434 ];
print(countPalinDigits(arr));


C#




// C# code to implement the approach
using System;
using System.Collections.Generic;
 
class GFG
{
  // Function to return the count of digits
  // in all the palindromic numbers of arr[]
  static int countPalinDigits(int[] arr)
  {
    int sum = 0;
 
    foreach (int n in arr)
    {
      string n_str = Convert.ToString(n);
      int l = n_str.Length;
      string rev = Convert.ToString(n);
      char[] revs =  rev.ToCharArray();
      Array.Reverse(revs);
      rev = new string(revs);
      if (rev.Equals(n_str)) // if palindrome
        sum += l;
 
    }
    return sum;
 
  }
 
  // Driver code
  public static void Main(string[] args)
  {
    int[] arr = { 121, 56, 434 };
    Console.WriteLine(countPalinDigits(arr));
  }
}
 
// This code is contributed by phasing17


Javascript




// Function to return the count of digits
// in all the palindromic numbers of arr[]
function countPalinDigits(arr)
{
   let sum = 0
  
   for (let n of arr)
   {
      let n_str = "" + n;
      let l = n_str.length
      let rev = n_str.split("").reverse().join("")
      if (rev.localeCompare(n_str) == 0) // if palindrome
         sum += l
   }
   return sum
    
}
 
// Driver code
let arr = [ 121, 56, 434 ];
console.log(countPalinDigits(arr));
 
 
// This code is contributed by phasing17


Output: 

6

 

Time Complexity : O(n)
Auxiliary Space: O(n)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments